Parametric study and optimization of thermal performance and pressure drop in heat sinks with double-layer porous microchannels

Q1 Chemical Engineering
Fahimeh Aliyari, Keivan Fallah, Hossein Zolfaghary Azizi, Farhad Hosseinnejad
{"title":"Parametric study and optimization of thermal performance and pressure drop in heat sinks with double-layer porous microchannels","authors":"Fahimeh Aliyari,&nbsp;Keivan Fallah,&nbsp;Hossein Zolfaghary Azizi,&nbsp;Farhad Hosseinnejad","doi":"10.1016/j.ijft.2025.101085","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the effective parameters in thermal performance and pressure drop of heat sinks with double-layer porous microchannels were investigated. Initially, a heat sink with porous fins was simulated in ANSYS Fluent 18, and the results were validated against reference data. Subsequently, 340 additional models were simulated with variations in parameters such as microchannel length and width, heat sink wall width and height, inter-channel distance, fluid velocity, and porosity levels (0, 20, 40, 60, and 80 percent). The results indicated that increasing porosity improved thermal performance in all samples, though it also led to higher pressure drops at higher porosity levels. Additionally, parallel flow demonstrated better thermal performance than counter flow across all samples. Reducing the microchannel length and width by 3 times and 4.3 times, respectively, and reducing the microchannel height by up to 4.5 times enhanced thermal performance; however, these changes significantly increased the pressure drop. The effect of flow velocity showed that decreasing the velocity led to a 12-times improvement in thermal performance, yet pressure drop increased by up to 70 times. These findings underscore the importance of optimizing geometric and operational parameters to achieve a balance between high thermal efficiency and acceptable pressure drop in the design of porous heat sinks. In the continuation of the research, the extracted parameters were used as inputs for optimization with a multi-objective genetic algorithm aimed at enhancing thermal performance and reducing pressure drop. Accordingly, the optimization process was pursued using the multi-objective genetic algorithm to find the optimal parameters that achieve the best thermal performance along with the lowest pressure drop, ensuring a desirable balance between improved thermal performance and reduced pressure drop. The convergence results obtained for two parameters in the optimization process demonstrated the success of the optimization method used and confirmed that the optimized parameters can effectively contribute to the enhancement of cooling system performance in industrial applications.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"26 ","pages":"Article 101085"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202725000333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the effective parameters in thermal performance and pressure drop of heat sinks with double-layer porous microchannels were investigated. Initially, a heat sink with porous fins was simulated in ANSYS Fluent 18, and the results were validated against reference data. Subsequently, 340 additional models were simulated with variations in parameters such as microchannel length and width, heat sink wall width and height, inter-channel distance, fluid velocity, and porosity levels (0, 20, 40, 60, and 80 percent). The results indicated that increasing porosity improved thermal performance in all samples, though it also led to higher pressure drops at higher porosity levels. Additionally, parallel flow demonstrated better thermal performance than counter flow across all samples. Reducing the microchannel length and width by 3 times and 4.3 times, respectively, and reducing the microchannel height by up to 4.5 times enhanced thermal performance; however, these changes significantly increased the pressure drop. The effect of flow velocity showed that decreasing the velocity led to a 12-times improvement in thermal performance, yet pressure drop increased by up to 70 times. These findings underscore the importance of optimizing geometric and operational parameters to achieve a balance between high thermal efficiency and acceptable pressure drop in the design of porous heat sinks. In the continuation of the research, the extracted parameters were used as inputs for optimization with a multi-objective genetic algorithm aimed at enhancing thermal performance and reducing pressure drop. Accordingly, the optimization process was pursued using the multi-objective genetic algorithm to find the optimal parameters that achieve the best thermal performance along with the lowest pressure drop, ensuring a desirable balance between improved thermal performance and reduced pressure drop. The convergence results obtained for two parameters in the optimization process demonstrated the success of the optimization method used and confirmed that the optimized parameters can effectively contribute to the enhancement of cooling system performance in industrial applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信