Effect of silicone, molybdenum disulfide, and multi-walled carbon nanotube on the tribological, mechanical, and thermal properties of polyamide 66/carbon fibre composites

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Bilal Özsarıkaya , Salih Hakan Yetgin , Ali Durmuş , Fatih Çalışkan
{"title":"Effect of silicone, molybdenum disulfide, and multi-walled carbon nanotube on the tribological, mechanical, and thermal properties of polyamide 66/carbon fibre composites","authors":"Bilal Özsarıkaya ,&nbsp;Salih Hakan Yetgin ,&nbsp;Ali Durmuş ,&nbsp;Fatih Çalışkan","doi":"10.1016/j.mseb.2025.118016","DOIUrl":null,"url":null,"abstract":"<div><div>The effect of silicone, molybdenum disulfide (MoS<sub>2</sub>), and multiwalled carbon nanotubes (MWCNT) on the mechanical, thermal, and tribological characteristics of polyamide 66 (PA66) composites reinforced with carbon fibre (CF) was extensively examined in this paper. An injection molding machine was used to make test samples for mechanical, thermal, and tribological testing after the twin-screw extruder was used to create the composite materials. To evaluate the mechanical behaviours of PA66 and composite samples, tensile strength (TS) and flexural strength (FS), tensile modulus (TM) and flexural modulus (FM), elongation at break (EB), and impact strength were measured. The TS and TM of PA66/30CF increased by 89.6 % and 374.3 % compared with PA66. PA66/30CF/0.5MWCNT nanocomposites exhibited better tensile (strength of 196.5 and modulus of 23575 MPa, respectively) and flexural (strength of 289 and modulus of 17700 MPa, respectively) properties. DSC analysis indicated that the melting temperature (<em>T</em><sub>m</sub>) of PA66 composites was not affected by adding CF, MWCNT, MoS<sub>2</sub> and silicone. In contrast, composites’ crystallisation temperature (T<sub>c</sub>) and degree of crystallinity (X<sub>c</sub>%) values were higher than those of PA66. The addition of MWCNT, MoS<sub>2</sub> and silicone yielded a further increase in Xc, and with 42.4 %, the PA66/30CF/0.5MWCNT/3MoS<sub>2</sub> nanocomposite yielded the highest value. The test for pin-on-disk (PoD) wear was conducted under dry sliding conditions, with 0.4, 0.8, and 1.2 m/s of sliding velocity, and a load of 20, 30, and 40 N. The tribological measurements implied that the PA66 composites prepared with 30 wt% of CF, 0.5 wt% MWCNT and 3 wt% MoS<sub>2</sub> showed the best friction and wear behavior. The COF of PA66 polymer was around 0.4, while the COF of PA66/CF composites was between 0.25–0.35. The incorporation of MWCNT, MoS<sub>2</sub>, and silicone into the PA66/30CF composite led to a further decrease in the COF, yielding values ranging between 0.15 and 0.25. It has been deduced that the MWCNT and MoS<sub>2</sub> additives improved the service life and thermomechanical durability of PA66 in a distinguishable manner. It was also revealed that the composite reinforced with MWCNT and MoS<sub>2</sub> exhibited enhanced wear resistance due to the strong interfacial bonding.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"314 ","pages":"Article 118016"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092151072500039X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The effect of silicone, molybdenum disulfide (MoS2), and multiwalled carbon nanotubes (MWCNT) on the mechanical, thermal, and tribological characteristics of polyamide 66 (PA66) composites reinforced with carbon fibre (CF) was extensively examined in this paper. An injection molding machine was used to make test samples for mechanical, thermal, and tribological testing after the twin-screw extruder was used to create the composite materials. To evaluate the mechanical behaviours of PA66 and composite samples, tensile strength (TS) and flexural strength (FS), tensile modulus (TM) and flexural modulus (FM), elongation at break (EB), and impact strength were measured. The TS and TM of PA66/30CF increased by 89.6 % and 374.3 % compared with PA66. PA66/30CF/0.5MWCNT nanocomposites exhibited better tensile (strength of 196.5 and modulus of 23575 MPa, respectively) and flexural (strength of 289 and modulus of 17700 MPa, respectively) properties. DSC analysis indicated that the melting temperature (Tm) of PA66 composites was not affected by adding CF, MWCNT, MoS2 and silicone. In contrast, composites’ crystallisation temperature (Tc) and degree of crystallinity (Xc%) values were higher than those of PA66. The addition of MWCNT, MoS2 and silicone yielded a further increase in Xc, and with 42.4 %, the PA66/30CF/0.5MWCNT/3MoS2 nanocomposite yielded the highest value. The test for pin-on-disk (PoD) wear was conducted under dry sliding conditions, with 0.4, 0.8, and 1.2 m/s of sliding velocity, and a load of 20, 30, and 40 N. The tribological measurements implied that the PA66 composites prepared with 30 wt% of CF, 0.5 wt% MWCNT and 3 wt% MoS2 showed the best friction and wear behavior. The COF of PA66 polymer was around 0.4, while the COF of PA66/CF composites was between 0.25–0.35. The incorporation of MWCNT, MoS2, and silicone into the PA66/30CF composite led to a further decrease in the COF, yielding values ranging between 0.15 and 0.25. It has been deduced that the MWCNT and MoS2 additives improved the service life and thermomechanical durability of PA66 in a distinguishable manner. It was also revealed that the composite reinforced with MWCNT and MoS2 exhibited enhanced wear resistance due to the strong interfacial bonding.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: B
Materials Science and Engineering: B 工程技术-材料科学:综合
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信