Synthesis, stabilization and characterization of zerovalent iron nanoparticles for remediation of hexavalent chromium – Comparing the hydrazine and sodium borohydride routes

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sutanu Maiti, Sudha Goel, Binay K. Dutta
{"title":"Synthesis, stabilization and characterization of zerovalent iron nanoparticles for remediation of hexavalent chromium – Comparing the hydrazine and sodium borohydride routes","authors":"Sutanu Maiti,&nbsp;Sudha Goel,&nbsp;Binay K. Dutta","doi":"10.1016/j.mseb.2025.118002","DOIUrl":null,"url":null,"abstract":"<div><div>Zerovalent iron nanoparticles (nZVI) have found diverse applications as reducing agents in chemical synthesis, particularly for environmental remediation. The preparation of nZVI using the novel hydrazine reduction route (CMC-nZVI) has been studied in detail in this work. A comparison was made with the conventional sodium borohydride method (ZVI<sub>B</sub>). The former route was found to be more effective in producing smaller (11–50 nm), relatively uniform nZVI particles with a narrow size distribution and spherical morphology. This particle size is much smaller than that of material prepared via the borohydride route, as hydrazine is a stronger reducing agent. The challenge of stabilizing the nanoparticles was addressed using carboxymethyl cellulose (CMC) coating to prevent aggregation and premature oxidation. Nanoparticles synthesized without CMC capping showed poorer stability and a broader particle size range. The effects of process parameters were investigated in detail. The synthesized nZVI particles were thoroughly characterized using several techniques, including SEM, AFM, XRD, FTIR, SQUID, BET, and XPS. The BET surface area of CMC-nZVI particles was more than four times that of ZVIB, indicating superior reactivity. The hydrazine hydrate route, combined with CMC stabilization, offers a promising approach for the large-scale production of stable nZVI nanoparticles suitable for environmental remediation applications. The potential of nZVI was demonstrated by testing the remediation of Cr(VI)-contaminated soil in the solid phase, where nearly complete reduction was achieved within approximately three hours.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"314 ","pages":"Article 118002"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092151072500025X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Zerovalent iron nanoparticles (nZVI) have found diverse applications as reducing agents in chemical synthesis, particularly for environmental remediation. The preparation of nZVI using the novel hydrazine reduction route (CMC-nZVI) has been studied in detail in this work. A comparison was made with the conventional sodium borohydride method (ZVIB). The former route was found to be more effective in producing smaller (11–50 nm), relatively uniform nZVI particles with a narrow size distribution and spherical morphology. This particle size is much smaller than that of material prepared via the borohydride route, as hydrazine is a stronger reducing agent. The challenge of stabilizing the nanoparticles was addressed using carboxymethyl cellulose (CMC) coating to prevent aggregation and premature oxidation. Nanoparticles synthesized without CMC capping showed poorer stability and a broader particle size range. The effects of process parameters were investigated in detail. The synthesized nZVI particles were thoroughly characterized using several techniques, including SEM, AFM, XRD, FTIR, SQUID, BET, and XPS. The BET surface area of CMC-nZVI particles was more than four times that of ZVIB, indicating superior reactivity. The hydrazine hydrate route, combined with CMC stabilization, offers a promising approach for the large-scale production of stable nZVI nanoparticles suitable for environmental remediation applications. The potential of nZVI was demonstrated by testing the remediation of Cr(VI)-contaminated soil in the solid phase, where nearly complete reduction was achieved within approximately three hours.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: B
Materials Science and Engineering: B 工程技术-材料科学:综合
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信