Enhanced remote sensing and deep learning aided water quality detection in the Ganges River, India supporting monitoring of aquatic environments

IF 6 Q1 ENGINEERING, MULTIDISCIPLINARY
Lavanya Kandasamy , Anand Mahendran , Sai Harsha Varma Sangaraju , Preksha Mathur , Soham Vijaykumar Faldu , Manuel Mazzara
{"title":"Enhanced remote sensing and deep learning aided water quality detection in the Ganges River, India supporting monitoring of aquatic environments","authors":"Lavanya Kandasamy ,&nbsp;Anand Mahendran ,&nbsp;Sai Harsha Varma Sangaraju ,&nbsp;Preksha Mathur ,&nbsp;Soham Vijaykumar Faldu ,&nbsp;Manuel Mazzara","doi":"10.1016/j.rineng.2024.103604","DOIUrl":null,"url":null,"abstract":"<div><div>Water pollution is a pressing global concern, impacting numerous communities across the world. Existing water quality monitoring systems rely on static or periodically collected data, presenting limitations in their ability to provide real-time dynamic insights. This research introduces an innovative approach to address this gap—a dynamic data intake system capable of identifying contamination sources, employing remote sensing techniques to track temporal changes, and issuing timely alerts for safeguarding crucial water resources. The proposed system adopts a hybrid methodology, integrating the QAA-v5 algorithm to derive essential parameters. These parameters serve as input for a pre-trained CatBoost model, which facilitates real-time calculations of chlorophyll-a concentrations at specified geographical coordinates. For future forecasting, the system leverages two distinct models: NBeats and CatBoost Time-Series. Notably, the CatBoost model achieves a commendable regression score of 0.985. For a comprehensive assessment and validation of the system's performance, the research draws upon the dataset provided by the International Ocean-Color Coordinating Group (IOCCG). The innovative framework introduced in this study exhibits considerable promise in advancing water quality protection and monitoring, making a significant contribution to the field of environmental research and management.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"25 ","pages":"Article 103604"},"PeriodicalIF":6.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123024018474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Water pollution is a pressing global concern, impacting numerous communities across the world. Existing water quality monitoring systems rely on static or periodically collected data, presenting limitations in their ability to provide real-time dynamic insights. This research introduces an innovative approach to address this gap—a dynamic data intake system capable of identifying contamination sources, employing remote sensing techniques to track temporal changes, and issuing timely alerts for safeguarding crucial water resources. The proposed system adopts a hybrid methodology, integrating the QAA-v5 algorithm to derive essential parameters. These parameters serve as input for a pre-trained CatBoost model, which facilitates real-time calculations of chlorophyll-a concentrations at specified geographical coordinates. For future forecasting, the system leverages two distinct models: NBeats and CatBoost Time-Series. Notably, the CatBoost model achieves a commendable regression score of 0.985. For a comprehensive assessment and validation of the system's performance, the research draws upon the dataset provided by the International Ocean-Color Coordinating Group (IOCCG). The innovative framework introduced in this study exhibits considerable promise in advancing water quality protection and monitoring, making a significant contribution to the field of environmental research and management.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信