Adaptive trajectory tracking of the unmanned surface vessel based on improved AC-MPC method

IF 5.5 2区 工程技术 Q1 ENGINEERING, CIVIL
Lei Zhang , Shengzhuo Zhang , Zhe Du , Hui Li , Langxiong Gan , Xiaobin Li
{"title":"Adaptive trajectory tracking of the unmanned surface vessel based on improved AC-MPC method","authors":"Lei Zhang ,&nbsp;Shengzhuo Zhang ,&nbsp;Zhe Du ,&nbsp;Hui Li ,&nbsp;Langxiong Gan ,&nbsp;Xiaobin Li","doi":"10.1016/j.oceaneng.2025.120455","DOIUrl":null,"url":null,"abstract":"<div><div>Trajectory tracking is one of the key technologies for ensuring safe navigation of the unmanned surface vessel (USV), whose main challenges are the low control accuracy and uncertainties caused by environmental disturbances. In this study, an adaptive model predictive control (MPC) method is proposed based on the Actor-Critic (AC) reinforcement learning strategy. First, a traditional MPC method is used for USV trajectory tracking. Then, the AC strategy is integrated to continuously adjust the state weight coefficients in the model predictive controller to address the increased error problem resulting from suboptimal control parameters. Finally, the prediction step size in the MPC is adaptively improved based on changes in reinforcement learning reward values and the selection of state-weight parameters. Simulation results show that the AC-MPC method adjusts the state-weight parameters quickly, and selects the appropriate prediction step size according to the change of the reward value. The proposed method effectively addresses the challenge of parameter adjustment when using the model predictive controller for trajectory tracking, thereby enhancing the adaptability of the controller in performing trajectory tracking tasks across various environments.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"322 ","pages":"Article 120455"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801825001702","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Trajectory tracking is one of the key technologies for ensuring safe navigation of the unmanned surface vessel (USV), whose main challenges are the low control accuracy and uncertainties caused by environmental disturbances. In this study, an adaptive model predictive control (MPC) method is proposed based on the Actor-Critic (AC) reinforcement learning strategy. First, a traditional MPC method is used for USV trajectory tracking. Then, the AC strategy is integrated to continuously adjust the state weight coefficients in the model predictive controller to address the increased error problem resulting from suboptimal control parameters. Finally, the prediction step size in the MPC is adaptively improved based on changes in reinforcement learning reward values and the selection of state-weight parameters. Simulation results show that the AC-MPC method adjusts the state-weight parameters quickly, and selects the appropriate prediction step size according to the change of the reward value. The proposed method effectively addresses the challenge of parameter adjustment when using the model predictive controller for trajectory tracking, thereby enhancing the adaptability of the controller in performing trajectory tracking tasks across various environments.
基于改进AC-MPC方法的无人水面舰艇自适应轨迹跟踪
轨迹跟踪是保证无人水面舰艇安全航行的关键技术之一,其主要挑战是控制精度低和环境干扰带来的不确定性。本文提出了一种基于Actor-Critic (AC)强化学习策略的自适应模型预测控制(MPC)方法。首先,采用传统的MPC方法对USV轨迹进行跟踪。然后,结合交流策略,在模型预测控制器中不断调整状态权系数,以解决控制参数次优导致的误差增加问题。最后,根据强化学习奖励值的变化和状态权重参数的选择,自适应地改进MPC中的预测步长。仿真结果表明,AC-MPC方法能够快速调整状态权参数,并根据奖励值的变化选择合适的预测步长。该方法有效地解决了模型预测控制器进行轨迹跟踪时参数调整的难题,增强了控制器在各种环境下执行轨迹跟踪任务的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ocean Engineering
Ocean Engineering 工程技术-工程:大洋
CiteScore
7.30
自引率
34.00%
发文量
2379
审稿时长
8.1 months
期刊介绍: Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信