Milad Panahi, Giovanni Michele Porta, Monica Riva, Alberto Guadagnini
{"title":"Modeling parametric uncertainty in PDEs models via Physics-Informed Neural Networks","authors":"Milad Panahi, Giovanni Michele Porta, Monica Riva, Alberto Guadagnini","doi":"10.1016/j.advwatres.2024.104870","DOIUrl":null,"url":null,"abstract":"<div><div>We provide an approach enabling us to employ physics-informed neural networks (PINNs) to propagate parametric uncertainty to model outputs. Our approach is applicable to systems where observations are scarce (or even lacking), these being typical situations associated with subsurface water bodies. Our physics-informed neural network under uncertainty (PINN-UU) integrates the space–time domain across which processes take place and uncertain parameter spaces within a unique computational domain. PINN-UU is then trained to satisfy the relevant physical principles (e.g., mass conservation) in the defined input domain. We employ a stage training approach via transfer learning to accommodate high-dimensional solution spaces. We demonstrate the effectiveness of PINN-UU in a scenario associated with reactive transport in porous media, showcasing its reliability, efficiency, and applicability to sensitivity analysis. PINN-UU emerges as a promising tool for robust uncertainty quantification, with broad applicability to groundwater systems. As such, it can be considered as a valuable alternative to traditional methods such as multi-realization Monte Carlo simulations based on direct solvers or black-box surrogate models.</div></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"195 ","pages":"Article 104870"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Water Resources","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0309170824002574","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
We provide an approach enabling us to employ physics-informed neural networks (PINNs) to propagate parametric uncertainty to model outputs. Our approach is applicable to systems where observations are scarce (or even lacking), these being typical situations associated with subsurface water bodies. Our physics-informed neural network under uncertainty (PINN-UU) integrates the space–time domain across which processes take place and uncertain parameter spaces within a unique computational domain. PINN-UU is then trained to satisfy the relevant physical principles (e.g., mass conservation) in the defined input domain. We employ a stage training approach via transfer learning to accommodate high-dimensional solution spaces. We demonstrate the effectiveness of PINN-UU in a scenario associated with reactive transport in porous media, showcasing its reliability, efficiency, and applicability to sensitivity analysis. PINN-UU emerges as a promising tool for robust uncertainty quantification, with broad applicability to groundwater systems. As such, it can be considered as a valuable alternative to traditional methods such as multi-realization Monte Carlo simulations based on direct solvers or black-box surrogate models.
期刊介绍:
Advances in Water Resources provides a forum for the presentation of fundamental scientific advances in the understanding of water resources systems. The scope of Advances in Water Resources includes any combination of theoretical, computational, and experimental approaches used to advance fundamental understanding of surface or subsurface water resources systems or the interaction of these systems with the atmosphere, geosphere, biosphere, and human societies. Manuscripts involving case studies that do not attempt to reach broader conclusions, research on engineering design, applied hydraulics, or water quality and treatment, as well as applications of existing knowledge that do not advance fundamental understanding of hydrological processes, are not appropriate for Advances in Water Resources.
Examples of appropriate topical areas that will be considered include the following:
• Surface and subsurface hydrology
• Hydrometeorology
• Environmental fluid dynamics
• Ecohydrology and ecohydrodynamics
• Multiphase transport phenomena in porous media
• Fluid flow and species transport and reaction processes