Flow and heat transfer analysis of an ionanofluid above a rotating disk undergoing torsion

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Dibjyoti Mondal, Amit Kumar Pandey, Abhijit Das
{"title":"Flow and heat transfer analysis of an ionanofluid above a rotating disk undergoing torsion","authors":"Dibjyoti Mondal,&nbsp;Amit Kumar Pandey,&nbsp;Abhijit Das","doi":"10.1016/j.cjph.2024.11.024","DOIUrl":null,"url":null,"abstract":"<div><div>The convective heat transfer properties of traditional nanofluids and ionic liquid-based nanofluids (ionanofluids) are crucial in engineering applications such as heat exchangers, electronics cooling, and energy storage. Given the relevance of the rotating disk flow model in these applications, this study examines the boundary layer flow and heat transfer resulting from the torsional motion of a rough rotating disk, specifically considering <span><math><mrow><msub><mrow><mi>Al</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> and <span><math><mi>Cu</mi></math></span> nanoparticles dispersed in water and the ionic liquid <span><math><mrow><mrow><mo>[</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub><mi>m</mi><mi>i</mi><mi>m</mi><mo>]</mo></mrow><mrow><mo>[</mo><mi>N</mi><msub><mrow><mrow><mo>(</mo><mi>T</mi><mi>f</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo></mrow></mrow></math></span> under a vertical magnetic field. The boundary value problem governing this flow is first shown to have a solution through a topological shooting method. Numerical integrations via a collocation method (SQLM) are then used to evaluate the flow and heat transfer characteristics. The results show that torque requirements decrease with the torsional exponent <span><math><mi>m</mi></math></span>, with water requiring more torque than <span><math><mrow><mrow><mo>[</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub><mi>m</mi><mi>i</mi><mi>m</mi><mo>]</mo></mrow><mrow><mo>[</mo><mi>N</mi><msub><mrow><mrow><mo>(</mo><mi>T</mi><mi>f</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo></mrow></mrow></math></span> to sustain rotation. Notably, <span><math><mrow><mrow><mo>[</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub><mi>m</mi><mi>i</mi><mi>m</mi><mo>]</mo></mrow><mrow><mo>[</mo><mi>N</mi><msub><mrow><mrow><mo>(</mo><mi>T</mi><mi>f</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo></mrow></mrow></math></span>-based fluids exhibit a higher heat transfer enhancement than water. Lamina-shaped nanoparticles deliver the highest heat transfer rates compared to other shapes (spherical, cylindrical, and columnar). Furthermore, the entropy generation number <span><math><mrow><mi>N</mi><mi>S</mi></mrow></math></span> declines with increased azimuthal slip parameter <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, thermal slip parameter <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, and torsional exponent <span><math><mi>m</mi></math></span>. This indicates that entropy generation can be controlled by incorporating torsional motion with thermal slip on an anisotropic rough disk, while also carefully selecting other governing parameters.</div></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":"93 ","pages":"Pages 127-157"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0577907324004520","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The convective heat transfer properties of traditional nanofluids and ionic liquid-based nanofluids (ionanofluids) are crucial in engineering applications such as heat exchangers, electronics cooling, and energy storage. Given the relevance of the rotating disk flow model in these applications, this study examines the boundary layer flow and heat transfer resulting from the torsional motion of a rough rotating disk, specifically considering Al2O3 and Cu nanoparticles dispersed in water and the ionic liquid [C4mim][N(Tf)2] under a vertical magnetic field. The boundary value problem governing this flow is first shown to have a solution through a topological shooting method. Numerical integrations via a collocation method (SQLM) are then used to evaluate the flow and heat transfer characteristics. The results show that torque requirements decrease with the torsional exponent m, with water requiring more torque than [C4mim][N(Tf)2] to sustain rotation. Notably, [C4mim][N(Tf)2]-based fluids exhibit a higher heat transfer enhancement than water. Lamina-shaped nanoparticles deliver the highest heat transfer rates compared to other shapes (spherical, cylindrical, and columnar). Furthermore, the entropy generation number NS declines with increased azimuthal slip parameter λ2, thermal slip parameter λ3, and torsional exponent m. This indicates that entropy generation can be controlled by incorporating torsional motion with thermal slip on an anisotropic rough disk, while also carefully selecting other governing parameters.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Physics
Chinese Journal of Physics 物理-物理:综合
CiteScore
8.50
自引率
10.00%
发文量
361
审稿时长
44 days
期刊介绍: The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics. The editors welcome manuscripts on: -General Physics: Statistical and Quantum Mechanics, etc.- Gravitation and Astrophysics- Elementary Particles and Fields- Nuclear Physics- Atomic, Molecular, and Optical Physics- Quantum Information and Quantum Computation- Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks- Plasma and Beam Physics- Condensed Matter: Structure, etc.- Condensed Matter: Electronic Properties, etc.- Polymer, Soft Matter, Biological, and Interdisciplinary Physics. CJP publishes regular research papers, feature articles and review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信