Deep learning-based landslide tsunami run-up prediction from synthetic gage data

IF 4.3 2区 工程技术 Q1 ENGINEERING, OCEAN
Mustafa Açıkkar , Baran Aydın
{"title":"Deep learning-based landslide tsunami run-up prediction from synthetic gage data","authors":"Mustafa Açıkkar ,&nbsp;Baran Aydın","doi":"10.1016/j.apor.2024.104360","DOIUrl":null,"url":null,"abstract":"<div><div>The present study proposes a deep learning model based on Long-Short Term Memory (LSTM) that uses gage measurements for prediction of landslide-driven maximum tsunami run-up. In an attempt to overcome the limitation of insufficient real-world data in the field, our methodology refers to analytical models to create a comprehensive dataset employing a time series recorded from an offshore gage as input and its corresponding maximum run-up at the shoreline as output, for different landslide scenarios with pre-determined parameters. The LSTM-based model is then trained using this dataset in order to predict the maximum run-up. The results, with mean values of 0.211 m, 0.149 m, 1.745% and 0.9988 for <em>RMSE</em>, <em>MAE</em>, <em>MAPE</em> and <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, respectively, indicate that our model is both accurate and precise. As the data-driven models such as the one proposed here are often utilized to identify relationships that may not be immediately apparent from the physical models alone, our interdisciplinary approach has the potential to foster the development of innovative solutions and methodologies for addressing complex natural hazards by enhancing early warning systems, preparedness and response to tsunamis.</div></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":"154 ","pages":"Article 104360"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ocean Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141118724004814","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0

Abstract

The present study proposes a deep learning model based on Long-Short Term Memory (LSTM) that uses gage measurements for prediction of landslide-driven maximum tsunami run-up. In an attempt to overcome the limitation of insufficient real-world data in the field, our methodology refers to analytical models to create a comprehensive dataset employing a time series recorded from an offshore gage as input and its corresponding maximum run-up at the shoreline as output, for different landslide scenarios with pre-determined parameters. The LSTM-based model is then trained using this dataset in order to predict the maximum run-up. The results, with mean values of 0.211 m, 0.149 m, 1.745% and 0.9988 for RMSE, MAE, MAPE and R2, respectively, indicate that our model is both accurate and precise. As the data-driven models such as the one proposed here are often utilized to identify relationships that may not be immediately apparent from the physical models alone, our interdisciplinary approach has the potential to foster the development of innovative solutions and methodologies for addressing complex natural hazards by enhancing early warning systems, preparedness and response to tsunamis.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Ocean Research
Applied Ocean Research 地学-工程:大洋
CiteScore
8.70
自引率
7.00%
发文量
316
审稿时长
59 days
期刊介绍: The aim of Applied Ocean Research is to encourage the submission of papers that advance the state of knowledge in a range of topics relevant to ocean engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信