Effect of backfilling stiffness and configuration on seabed failure mechanisms and pipeline response to ice gouging

IF 4.3 2区 工程技术 Q1 ENGINEERING, OCEAN
Alireza Ghorbanzadeh, Hodjat Shiri, Xiaoyu Dong
{"title":"Effect of backfilling stiffness and configuration on seabed failure mechanisms and pipeline response to ice gouging","authors":"Alireza Ghorbanzadeh,&nbsp;Hodjat Shiri,&nbsp;Xiaoyu Dong","doi":"10.1016/j.apor.2025.104413","DOIUrl":null,"url":null,"abstract":"<div><div>Ice gouging is a significant issue for offshore structures in cold environments. Pipelines in Arctic regions are buried in the seabed to prevent the direct contact of pipelines and the impacts of soil displacement from ice gouging. However, choosing the appropriate backfilling material and stiffness to maintain the pipeline's integrity while minimizing construction costs is a complex design consideration. It is crucial to accurately model the interaction between the ice, backfill, trench wall, and pipeline to assess the backfill functionality in a coupled ice gouging analysis. This study comprehensively investigated the effect of backfilling stiffness and configuration on seabed failure mechanisms and pipeline response during ice gouging events on a deeply buried pipeline. The study focused on six different backfill materials, including dense and loose sands and very soft clay to stiff clay. The Coupled Eulerian-Lagrangian (CEL) method was used to simulate the large seabed deformation due to the ice gouging process in a trenched/backfilled seabed in Abaqus/Explicit. Incorporation of the strain-rate dependency and strain-softening effects involved the development of a user-defined subroutine and incremental update of the undrained shear strength within the Abaqus software. Key findings reveal that both overly soft and excessively stiff backfill materials can negatively impact pipeline response during ice gouging. Very soft clay exhibits a distinct \"removal\" mechanism, leading to increased pipeline displacement, while overly stiff clay and dense sands result in more significant displacement due to efficient force transfer. The results can inform the selection of appropriate backfill materials and backfilling techniques to enhance pipeline protection against ice gouging.</div></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":"154 ","pages":"Article 104413"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ocean Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014111872500001X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0

Abstract

Ice gouging is a significant issue for offshore structures in cold environments. Pipelines in Arctic regions are buried in the seabed to prevent the direct contact of pipelines and the impacts of soil displacement from ice gouging. However, choosing the appropriate backfilling material and stiffness to maintain the pipeline's integrity while minimizing construction costs is a complex design consideration. It is crucial to accurately model the interaction between the ice, backfill, trench wall, and pipeline to assess the backfill functionality in a coupled ice gouging analysis. This study comprehensively investigated the effect of backfilling stiffness and configuration on seabed failure mechanisms and pipeline response during ice gouging events on a deeply buried pipeline. The study focused on six different backfill materials, including dense and loose sands and very soft clay to stiff clay. The Coupled Eulerian-Lagrangian (CEL) method was used to simulate the large seabed deformation due to the ice gouging process in a trenched/backfilled seabed in Abaqus/Explicit. Incorporation of the strain-rate dependency and strain-softening effects involved the development of a user-defined subroutine and incremental update of the undrained shear strength within the Abaqus software. Key findings reveal that both overly soft and excessively stiff backfill materials can negatively impact pipeline response during ice gouging. Very soft clay exhibits a distinct "removal" mechanism, leading to increased pipeline displacement, while overly stiff clay and dense sands result in more significant displacement due to efficient force transfer. The results can inform the selection of appropriate backfill materials and backfilling techniques to enhance pipeline protection against ice gouging.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Ocean Research
Applied Ocean Research 地学-工程:大洋
CiteScore
8.70
自引率
7.00%
发文量
316
审稿时长
59 days
期刊介绍: The aim of Applied Ocean Research is to encourage the submission of papers that advance the state of knowledge in a range of topics relevant to ocean engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信