Effects of the inlet gas volume fraction on the structural dynamic characteristics of gas‒liquid multiphase pumps

IF 4.3 2区 工程技术 Q1 ENGINEERING, OCEAN
Xin Wu, Guojun Zhu, Jianjun Feng, Xingqi Luo
{"title":"Effects of the inlet gas volume fraction on the structural dynamic characteristics of gas‒liquid multiphase pumps","authors":"Xin Wu,&nbsp;Guojun Zhu,&nbsp;Jianjun Feng,&nbsp;Xingqi Luo","doi":"10.1016/j.apor.2024.104347","DOIUrl":null,"url":null,"abstract":"<div><div>The inlet gas volume fraction (IGVF) has a significant impact on the performance of the gas‒liquid multiphase pump. To explore the effects of different IGVFs on the performance of gas–liquid multiphase pump, it is taken as the research object and the deformation and stress of the impeller and pump shaft under pure water and different IGVFs are obtained. The results show that the maximum deformation of the impeller occurs at the blade trailing edge. The maximum deformation of the impeller under 20%, 30% IGVF is reduced by 9.97% and 16.79% compared to 10% IGVF, respectively. The maximum deformation of the pump shaft is decreased by 0.15% and 0.26%, respectively. The stress of the impeller at the connection between the blade trailing edge and the hub is the largest. The maximum stress of the impeller at 20% and 30% IGVF is reduced by 310 Pa and 600 Pa compared to 10% IGVF, respectively. The radial force and the axis trace are uniformly under pure water and are chaotic under different IGVFs. Under pure water condition, the maximum deformation and stress fluctuation on the impeller and shaft is smaller than that under different IGVFs. The amplitude of maximum deformation fluctuation on the impeller and shaft becomes smaller with the increasing IGVF.</div></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":"154 ","pages":"Article 104347"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ocean Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141118724004681","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0

Abstract

The inlet gas volume fraction (IGVF) has a significant impact on the performance of the gas‒liquid multiphase pump. To explore the effects of different IGVFs on the performance of gas–liquid multiphase pump, it is taken as the research object and the deformation and stress of the impeller and pump shaft under pure water and different IGVFs are obtained. The results show that the maximum deformation of the impeller occurs at the blade trailing edge. The maximum deformation of the impeller under 20%, 30% IGVF is reduced by 9.97% and 16.79% compared to 10% IGVF, respectively. The maximum deformation of the pump shaft is decreased by 0.15% and 0.26%, respectively. The stress of the impeller at the connection between the blade trailing edge and the hub is the largest. The maximum stress of the impeller at 20% and 30% IGVF is reduced by 310 Pa and 600 Pa compared to 10% IGVF, respectively. The radial force and the axis trace are uniformly under pure water and are chaotic under different IGVFs. Under pure water condition, the maximum deformation and stress fluctuation on the impeller and shaft is smaller than that under different IGVFs. The amplitude of maximum deformation fluctuation on the impeller and shaft becomes smaller with the increasing IGVF.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Ocean Research
Applied Ocean Research 地学-工程:大洋
CiteScore
8.70
自引率
7.00%
发文量
316
审稿时长
59 days
期刊介绍: The aim of Applied Ocean Research is to encourage the submission of papers that advance the state of knowledge in a range of topics relevant to ocean engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信