Investigating the techniques used for improving the aerodynamic performance of Archimedes spiral wind turbines: A comprehensive review and future work avenues

IF 6 Q1 ENGINEERING, MULTIDISCIPLINARY
Ahmed Essa Faisal , Chin Wai Lim , Balasem Abdulameer Jabbar Al-Quraishi , Gamal Alkawsi , Chung Hong Tan , Jassinnee Milano , Chen Chai Phing , Khaled Al-Farhany , Sieh Kiong Tiong
{"title":"Investigating the techniques used for improving the aerodynamic performance of Archimedes spiral wind turbines: A comprehensive review and future work avenues","authors":"Ahmed Essa Faisal ,&nbsp;Chin Wai Lim ,&nbsp;Balasem Abdulameer Jabbar Al-Quraishi ,&nbsp;Gamal Alkawsi ,&nbsp;Chung Hong Tan ,&nbsp;Jassinnee Milano ,&nbsp;Chen Chai Phing ,&nbsp;Khaled Al-Farhany ,&nbsp;Sieh Kiong Tiong","doi":"10.1016/j.rineng.2025.103992","DOIUrl":null,"url":null,"abstract":"<div><div>In the global pursuit of sustainable urban energy solutions, urban centers' significant contributions to energy consumption and carbon emissions have driven cities to adopt energy efficiency policies and renewable resources. Archimedes spiral wind turbines (ASWTs) offer promising technology due to their spiral blade design, which ensures high efficiency at low to medium wind speeds, automatic wind direction alignment, and low noise emissions. This paper provides a comprehensive review and critical analysis of aerodynamic performance enhancement techniques for ASWTs, identifying key research gaps and suggesting future research directions. These include investigating the synergistic relationships of key blade dimensions such as diameter, length, and blade angle, concurrent with the development of more efficient augmentation systems, and improving advanced materials used to increase durability and reduce solidity. The analysis also compares previous methodologies and offers guidance on integrating ASWTs effectively within urban areas, contributing to cleaner and more sustainable energy solutions.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"25 ","pages":"Article 103992"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123025000805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the global pursuit of sustainable urban energy solutions, urban centers' significant contributions to energy consumption and carbon emissions have driven cities to adopt energy efficiency policies and renewable resources. Archimedes spiral wind turbines (ASWTs) offer promising technology due to their spiral blade design, which ensures high efficiency at low to medium wind speeds, automatic wind direction alignment, and low noise emissions. This paper provides a comprehensive review and critical analysis of aerodynamic performance enhancement techniques for ASWTs, identifying key research gaps and suggesting future research directions. These include investigating the synergistic relationships of key blade dimensions such as diameter, length, and blade angle, concurrent with the development of more efficient augmentation systems, and improving advanced materials used to increase durability and reduce solidity. The analysis also compares previous methodologies and offers guidance on integrating ASWTs effectively within urban areas, contributing to cleaner and more sustainable energy solutions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信