Review of machine learning applications in additive manufacturing

IF 6 Q1 ENGINEERING, MULTIDISCIPLINARY
Sirajudeen Inayathullah, Raviteja Buddala
{"title":"Review of machine learning applications in additive manufacturing","authors":"Sirajudeen Inayathullah,&nbsp;Raviteja Buddala","doi":"10.1016/j.rineng.2024.103676","DOIUrl":null,"url":null,"abstract":"<div><div>The necessity to produce intricate components results in considerable progress in manufacturing methods. Additive manufacturing (AM) is a disruptive technology that allows intricate and custom-tailored components to be fabricated with great precision and efficiency. It is applied in advanced sectors like aerospace, healthcare, automotive industries, and it starts having their interest in many other areas. Machine learning (ML) has become a powerful tool for overcoming problems in AM, offering process efficiency, defect detection, quality assurance, and predictive modelling of mechanical properties. This review discusses how ML transforms AM by providing design evaluation, process optimization, and production control innovation. The approach taken in the study is systematic, examining the current literature and case studies of ML application to AM. Hybrid data collection techniques that combine machine settings with physics aware features and yield robust predictive models are the focus. Additionally, the review evaluates various ML algorithms used to predict mechanical properties, optimize process parameters, and characterize AM processes. The measurements indicate groundbreaking improvements in ML powered solutions, like process monitoring in real time, automatic parameter adaptation, and defect mitigation that offer greater accuracy, ease, and reliability in AM. Yet, data scarcity, computational challenges and a gap between research and industrial applications of ML exist. To realize the full potential of ML in AM it is critical to address these challenges. It closes with the identification of promising research directions including standardization of data improvement, developing new advanced ML algorithms, and building an interdisciplinary research effort to spur additional progress in this field.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"25 ","pages":"Article 103676"},"PeriodicalIF":6.0000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123024019194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The necessity to produce intricate components results in considerable progress in manufacturing methods. Additive manufacturing (AM) is a disruptive technology that allows intricate and custom-tailored components to be fabricated with great precision and efficiency. It is applied in advanced sectors like aerospace, healthcare, automotive industries, and it starts having their interest in many other areas. Machine learning (ML) has become a powerful tool for overcoming problems in AM, offering process efficiency, defect detection, quality assurance, and predictive modelling of mechanical properties. This review discusses how ML transforms AM by providing design evaluation, process optimization, and production control innovation. The approach taken in the study is systematic, examining the current literature and case studies of ML application to AM. Hybrid data collection techniques that combine machine settings with physics aware features and yield robust predictive models are the focus. Additionally, the review evaluates various ML algorithms used to predict mechanical properties, optimize process parameters, and characterize AM processes. The measurements indicate groundbreaking improvements in ML powered solutions, like process monitoring in real time, automatic parameter adaptation, and defect mitigation that offer greater accuracy, ease, and reliability in AM. Yet, data scarcity, computational challenges and a gap between research and industrial applications of ML exist. To realize the full potential of ML in AM it is critical to address these challenges. It closes with the identification of promising research directions including standardization of data improvement, developing new advanced ML algorithms, and building an interdisciplinary research effort to spur additional progress in this field.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信