Anisotropic hyper-visco-pseudoelastic damage constitutive model for fiber-reinforced flexible composites considering a temperature effect

IF 3.4 3区 工程技术 Q1 MECHANICS
Yifeng Dong , Zeang Zhao , Xiaoyao Xu , Yutong Fu , Heng Yang , Ying Li , Daining Fang
{"title":"Anisotropic hyper-visco-pseudoelastic damage constitutive model for fiber-reinforced flexible composites considering a temperature effect","authors":"Yifeng Dong ,&nbsp;Zeang Zhao ,&nbsp;Xiaoyao Xu ,&nbsp;Yutong Fu ,&nbsp;Heng Yang ,&nbsp;Ying Li ,&nbsp;Daining Fang","doi":"10.1016/j.ijsolstr.2025.113254","DOIUrl":null,"url":null,"abstract":"<div><div>Fiber-reinforced flexible composites (FRFCs) and flexible structures are widely used in applications such as soft actuators and biomedical engineering owing to their excellent flexibility and toughness. However, the temperature-sensitive and history-dependent stress-softening effect during cyclic loading–unloading processes cannot be adequately described by the existing theoretical models. In this study, an anisotropic hyper-visco-pseudoelastic damage constitutive model that considers the temperature effect is established to examine the cyclic stress-softening effect and residual-deformation behavior of FRFCs. This model combines the hyper-visco-pseudoelastic theory and continuum damage mechanics while incorporating the influence of temperature. To quantify the degree of damage during cyclic loading–unloading processes, an anisotropic damage evolution law that satisfies thermodynamic constraints is proposed. Additionally, it has been demonstrated that a comprehensive consideration of viscoelasticity, pseudoelasticity, and the damage effect is crucial for accurately describing the cyclic stress-softening effect. Furthermore, a numerical computational framework is presented to analyze the cyclic softening effect and residual deformation in FRFCs and flexible structures. The effectiveness of the constitutive model and numerical computational framework are validated by conducting cyclic loading–unloading experiments at different temperatures. A good agreement is observed between the results of theoretical calculations and numerical simulations and experimental data, confirming the advantages of the proposed constitutive model and numerical computational framework in accurately describing the softening effect and residual deformation of FRFCs, soft biological tissues, and flexible structures with complex structural forms. This study provides theoretical guidance and numerical computation techniques for improving the performance stability of FRFCs and novel flexible structures.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"311 ","pages":"Article 113254"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002076832500040X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Fiber-reinforced flexible composites (FRFCs) and flexible structures are widely used in applications such as soft actuators and biomedical engineering owing to their excellent flexibility and toughness. However, the temperature-sensitive and history-dependent stress-softening effect during cyclic loading–unloading processes cannot be adequately described by the existing theoretical models. In this study, an anisotropic hyper-visco-pseudoelastic damage constitutive model that considers the temperature effect is established to examine the cyclic stress-softening effect and residual-deformation behavior of FRFCs. This model combines the hyper-visco-pseudoelastic theory and continuum damage mechanics while incorporating the influence of temperature. To quantify the degree of damage during cyclic loading–unloading processes, an anisotropic damage evolution law that satisfies thermodynamic constraints is proposed. Additionally, it has been demonstrated that a comprehensive consideration of viscoelasticity, pseudoelasticity, and the damage effect is crucial for accurately describing the cyclic stress-softening effect. Furthermore, a numerical computational framework is presented to analyze the cyclic softening effect and residual deformation in FRFCs and flexible structures. The effectiveness of the constitutive model and numerical computational framework are validated by conducting cyclic loading–unloading experiments at different temperatures. A good agreement is observed between the results of theoretical calculations and numerical simulations and experimental data, confirming the advantages of the proposed constitutive model and numerical computational framework in accurately describing the softening effect and residual deformation of FRFCs, soft biological tissues, and flexible structures with complex structural forms. This study provides theoretical guidance and numerical computation techniques for improving the performance stability of FRFCs and novel flexible structures.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
8.30%
发文量
405
审稿时长
70 days
期刊介绍: The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field. Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信