Strategic synthesis of biowaste-derived magnetic hydrochar for adsorption and photocatalytic removal of Chlorpyrifos herbicides from simulated wastewater

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Suman Kumari , Arush Sharma , Pooja Dhiman , Manita Thakur , Zouhaier Aloui , Manickam Selvaraj , Ajay Kumar
{"title":"Strategic synthesis of biowaste-derived magnetic hydrochar for adsorption and photocatalytic removal of Chlorpyrifos herbicides from simulated wastewater","authors":"Suman Kumari ,&nbsp;Arush Sharma ,&nbsp;Pooja Dhiman ,&nbsp;Manita Thakur ,&nbsp;Zouhaier Aloui ,&nbsp;Manickam Selvaraj ,&nbsp;Ajay Kumar","doi":"10.1016/j.mseb.2025.118009","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents the synthesis of a magnetic hydrochar composite (ZM<sub>MHC</sub>) from Zea mays biowaste, integrating CoFe<sub>2</sub>O<sub>4</sub> nanoparticles (5–20 wt%). Characterization techniques included BET, XRD, FESEM, HRTEM etc. The ZM<sub>MHC</sub> composite with 15 wt% CoFe<sub>2</sub>O<sub>4</sub> exhibited the highest surface area of 162.89 m<sup>2</sup>/g. Saturation magnetization (Ms) values for composites with 5 %, 10 %, and 15 wt% CoFe<sub>2</sub>O<sub>4</sub> were 34.70 emu/g, 42.73 emu/g, and 54.40 emu/g, respectively, indicating magnetic properties. The composite displayed a band gap of 2.18 eV, enabling visible light activity. For wastewater, ZM<sub>MHC</sub> achieved 97.4 % CPF adsorption in 120 min at pH 6.0, following the Langmuir model (R<sup>2</sup> = 0.99). Photocatalytic degradation removed 94.2 % CPF in 180 min, with the rate k<sub>1</sub> 0.0161 min<sup>-1</sup>. Radical scavenging experiment confirmed the photoexcited electrons as key contributors to CPF degradation. Its high surface area, magnetization, visible-light activity, and reusability make it promising for wastewater treatment.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"314 ","pages":"Article 118009"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510725000327","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents the synthesis of a magnetic hydrochar composite (ZMMHC) from Zea mays biowaste, integrating CoFe2O4 nanoparticles (5–20 wt%). Characterization techniques included BET, XRD, FESEM, HRTEM etc. The ZMMHC composite with 15 wt% CoFe2O4 exhibited the highest surface area of 162.89 m2/g. Saturation magnetization (Ms) values for composites with 5 %, 10 %, and 15 wt% CoFe2O4 were 34.70 emu/g, 42.73 emu/g, and 54.40 emu/g, respectively, indicating magnetic properties. The composite displayed a band gap of 2.18 eV, enabling visible light activity. For wastewater, ZMMHC achieved 97.4 % CPF adsorption in 120 min at pH 6.0, following the Langmuir model (R2 = 0.99). Photocatalytic degradation removed 94.2 % CPF in 180 min, with the rate k1 0.0161 min-1. Radical scavenging experiment confirmed the photoexcited electrons as key contributors to CPF degradation. Its high surface area, magnetization, visible-light activity, and reusability make it promising for wastewater treatment.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: B
Materials Science and Engineering: B 工程技术-材料科学:综合
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信