Outstanding electrocatalytic activity and corrosion property of NiCr nanoparticle alloys electrodeposited from a choline chloride/urea deep eutectic solvent

Van Duc Chien , Kiem Do Van , Thi Hinh Dinh , Dao Lien Tien , Tu Manh Le
{"title":"Outstanding electrocatalytic activity and corrosion property of NiCr nanoparticle alloys electrodeposited from a choline chloride/urea deep eutectic solvent","authors":"Van Duc Chien ,&nbsp;Kiem Do Van ,&nbsp;Thi Hinh Dinh ,&nbsp;Dao Lien Tien ,&nbsp;Tu Manh Le","doi":"10.1016/j.jil.2024.100129","DOIUrl":null,"url":null,"abstract":"<div><div>Nickel-chromium alloys are known for their superior corrosion resistance, wear resistance, and hardness, making them a topic of significant interest. This study explores the electrodeposition of Ni-Cr alloys onto a glassy carbon electrode from a choline chloride/urea deep eutectic solvent. Electrochemical techniques, including cyclic voltammetry and chronoamperometry, were utilized to explore the deposition process. Voltametric analysis revealed that Ni-Cr alloys could be electrodeposited from the reline deep eutectic solvent through a single potential step. The analysis of current density transients indicated that the electrocrystallization of Ni-Cr follows a three-dimensional (3D) nucleation and diffusion-controlled mechanism on the bimetallic growing surface. Additionally, the presence of the Ni(II) component was found to significantly enhance the kinetics of Ni-Cr phase formation, facilitating rapid deposition from the eutectic mixture. Surface characterization techniques, including scanning electron microscopy, energy-dispersive X-ray spectroscopy mapping, and X-ray diffraction, confirmed the uniform distribution of elements, the formation of the Ni-Cr phase, and its crystalline structure. The high quality of nickel-chromium alloys obtained from the reline deep eutectic solvent highlights their potential applications in various engineering fields, particularly in surface coating and metal protection.</div></div>","PeriodicalId":100794,"journal":{"name":"Journal of Ionic Liquids","volume":"5 1","pages":"Article 100129"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ionic Liquids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772422024000521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nickel-chromium alloys are known for their superior corrosion resistance, wear resistance, and hardness, making them a topic of significant interest. This study explores the electrodeposition of Ni-Cr alloys onto a glassy carbon electrode from a choline chloride/urea deep eutectic solvent. Electrochemical techniques, including cyclic voltammetry and chronoamperometry, were utilized to explore the deposition process. Voltametric analysis revealed that Ni-Cr alloys could be electrodeposited from the reline deep eutectic solvent through a single potential step. The analysis of current density transients indicated that the electrocrystallization of Ni-Cr follows a three-dimensional (3D) nucleation and diffusion-controlled mechanism on the bimetallic growing surface. Additionally, the presence of the Ni(II) component was found to significantly enhance the kinetics of Ni-Cr phase formation, facilitating rapid deposition from the eutectic mixture. Surface characterization techniques, including scanning electron microscopy, energy-dispersive X-ray spectroscopy mapping, and X-ray diffraction, confirmed the uniform distribution of elements, the formation of the Ni-Cr phase, and its crystalline structure. The high quality of nickel-chromium alloys obtained from the reline deep eutectic solvent highlights their potential applications in various engineering fields, particularly in surface coating and metal protection.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信