Bio-inspired novel choline ester ionic liquid gel polymer electrolytes for safer lithium-ion batteries

Tommy Hoong Wy Lee, Phei Li Lau, Ianatul Khoiroh
{"title":"Bio-inspired novel choline ester ionic liquid gel polymer electrolytes for safer lithium-ion batteries","authors":"Tommy Hoong Wy Lee,&nbsp;Phei Li Lau,&nbsp;Ianatul Khoiroh","doi":"10.1016/j.jil.2025.100132","DOIUrl":null,"url":null,"abstract":"<div><div>The rise in lithium battery use has triggered concerns regarding safety due to flammable liquid electrolytes. Ionic liquids (ILs) present an alternative, offering low volatility and high stability. This study explores novel choline-based ILs incorporated into a polymer matrix to synthesise ionic liquid gel polymer electrolytes (GPEs). Structural confirmation via Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) spectroscopy verified successful synthesis, while the thermogravimetric analyzer (TGA) revealed their promising thermal stability. GPEs demonstrated remarkable flammability resistance compared to commercial separators. Electrochemical assessments, including electrochemical impedance spectroscopy (EIS), linear sweep voltammetry (LSV), and galvanostatic charge-discharge (GCD), showcased high ionic conductivities and electrochemical stability. Transference numbers and dendrite growth analysis further underscored their excellent performance. Specifically, GPEs comprising 70 % propionyl choline bis(trifluoromethanesulfonyl)imide within a polymer matrix, poly(vinylidene fluoride)-co-hexafluoropropylene (PVDF-HFP), exhibited exceptional conductivity and transference numbers, positioning them as strong candidates for safer and more efficient lithium-ion battery electrolytes.</div></div>","PeriodicalId":100794,"journal":{"name":"Journal of Ionic Liquids","volume":"5 1","pages":"Article 100132"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ionic Liquids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772422025000011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rise in lithium battery use has triggered concerns regarding safety due to flammable liquid electrolytes. Ionic liquids (ILs) present an alternative, offering low volatility and high stability. This study explores novel choline-based ILs incorporated into a polymer matrix to synthesise ionic liquid gel polymer electrolytes (GPEs). Structural confirmation via Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) spectroscopy verified successful synthesis, while the thermogravimetric analyzer (TGA) revealed their promising thermal stability. GPEs demonstrated remarkable flammability resistance compared to commercial separators. Electrochemical assessments, including electrochemical impedance spectroscopy (EIS), linear sweep voltammetry (LSV), and galvanostatic charge-discharge (GCD), showcased high ionic conductivities and electrochemical stability. Transference numbers and dendrite growth analysis further underscored their excellent performance. Specifically, GPEs comprising 70 % propionyl choline bis(trifluoromethanesulfonyl)imide within a polymer matrix, poly(vinylidene fluoride)-co-hexafluoropropylene (PVDF-HFP), exhibited exceptional conductivity and transference numbers, positioning them as strong candidates for safer and more efficient lithium-ion battery electrolytes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信