Iodine-catalyzed 1-Aryltriazene/CS2 duo for sonochemical synthesis of 3-Sulphenylindoles employing [BMIM(SO3H)][OTf] as recyclable promoting system.

Vinod Jadhav , Athmanand Anchi , Imamhusen Jamadar , Shruti S. Malunavar , Rajesh G. Kalkhambkar , Suraj M. Sutar
{"title":"Iodine-catalyzed 1-Aryltriazene/CS2 duo for sonochemical synthesis of 3-Sulphenylindoles employing [BMIM(SO3H)][OTf] as recyclable promoting system.","authors":"Vinod Jadhav ,&nbsp;Athmanand Anchi ,&nbsp;Imamhusen Jamadar ,&nbsp;Shruti S. Malunavar ,&nbsp;Rajesh G. Kalkhambkar ,&nbsp;Suraj M. Sutar","doi":"10.1016/j.jil.2024.100128","DOIUrl":null,"url":null,"abstract":"<div><div>Iodine-catalyzed regioselective sulphenylation of various 3-substituted indoles using CS<sub>2</sub> as potential tool is demonstrated. An efficient and eco-friendly protocol has been developed to synthesize libraries of 3-sulphenyl indoles by employing CS<sub>2</sub> as sulphur coupling-linkage for various 1-aryltriaznes and indoles. Short reaction time, mild reaction conditions, recycle and reuse of ionic liquids (ILs) are the advantages of this methodology. A plausible reaction mechanism to narrate the exploitation of the catalytic and promoting systems is also highlights of this work.</div></div>","PeriodicalId":100794,"journal":{"name":"Journal of Ionic Liquids","volume":"5 1","pages":"Article 100128"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ionic Liquids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277242202400051X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Iodine-catalyzed regioselective sulphenylation of various 3-substituted indoles using CS2 as potential tool is demonstrated. An efficient and eco-friendly protocol has been developed to synthesize libraries of 3-sulphenyl indoles by employing CS2 as sulphur coupling-linkage for various 1-aryltriaznes and indoles. Short reaction time, mild reaction conditions, recycle and reuse of ionic liquids (ILs) are the advantages of this methodology. A plausible reaction mechanism to narrate the exploitation of the catalytic and promoting systems is also highlights of this work.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信