Performance optimizing of pneumatic soft robotic hands using wave-shaped contour actuator

IF 6 Q1 ENGINEERING, MULTIDISCIPLINARY
Hui Chen , Mohammed A.H. Ali , Zhenya Wang , Junlong Chen , Montaser N.A. Ramadan , Mohammad Alkhedher
{"title":"Performance optimizing of pneumatic soft robotic hands using wave-shaped contour actuator","authors":"Hui Chen ,&nbsp;Mohammed A.H. Ali ,&nbsp;Zhenya Wang ,&nbsp;Junlong Chen ,&nbsp;Montaser N.A. Ramadan ,&nbsp;Mohammad Alkhedher","doi":"10.1016/j.rineng.2024.103456","DOIUrl":null,"url":null,"abstract":"<div><div>Soft robotic hands have gained significant attention in recent years due to their simplicity in control, ease of fabrication, and remarkable compliance. However, traditional designs often suffer from limited contact area and insufficient grasping force. In this study, we propose a novel four-finger pneumatic soft robotic hand with wave-shaped contour actuators to address these issues. Inspired by natural grasping mechanisms, the proposed design integrates multiple actuation modes to enhance both adaptability and reliability. An analytical model based on constant curvature bending theory and the Yeoh constitutive model is developed to guide the design and predict the performance of the actuators. The model is validated through extensive Abaqus finite element simulations, demonstrating excellent agreement with experimental results. Our findings confirm that the actuators achieve consistent and reliable bending motion with optimal structural parameters. Experimental evaluation of the soft robotic hand includes bending trajectory analysis and grasping tests with various irregular objects. The results show that the actuators provide a maximum bending angle of 180° under 26 kPa pressure and maintain stable grasps for objects of different shapes and sizes. The soft robotic hand demonstrates superior grasping adaptability and reliability due to its high compliance and optimized design. This study paves the way for practical applications in industrial automation, medical devices, and service robotics, highlighting the potential of wave-shaped contour actuators in enhancing the functionality of soft robotic hands.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"25 ","pages":"Article 103456"},"PeriodicalIF":6.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123024017080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Soft robotic hands have gained significant attention in recent years due to their simplicity in control, ease of fabrication, and remarkable compliance. However, traditional designs often suffer from limited contact area and insufficient grasping force. In this study, we propose a novel four-finger pneumatic soft robotic hand with wave-shaped contour actuators to address these issues. Inspired by natural grasping mechanisms, the proposed design integrates multiple actuation modes to enhance both adaptability and reliability. An analytical model based on constant curvature bending theory and the Yeoh constitutive model is developed to guide the design and predict the performance of the actuators. The model is validated through extensive Abaqus finite element simulations, demonstrating excellent agreement with experimental results. Our findings confirm that the actuators achieve consistent and reliable bending motion with optimal structural parameters. Experimental evaluation of the soft robotic hand includes bending trajectory analysis and grasping tests with various irregular objects. The results show that the actuators provide a maximum bending angle of 180° under 26 kPa pressure and maintain stable grasps for objects of different shapes and sizes. The soft robotic hand demonstrates superior grasping adaptability and reliability due to its high compliance and optimized design. This study paves the way for practical applications in industrial automation, medical devices, and service robotics, highlighting the potential of wave-shaped contour actuators in enhancing the functionality of soft robotic hands.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信