Advanced control strategies for microgrids: A review of droop control and virtual impedance techniques

IF 6 Q1 ENGINEERING, MULTIDISCIPLINARY
K.N. Yogithanjali Saimadhuri, M. Janaki
{"title":"Advanced control strategies for microgrids: A review of droop control and virtual impedance techniques","authors":"K.N. Yogithanjali Saimadhuri,&nbsp;M. Janaki","doi":"10.1016/j.rineng.2024.103799","DOIUrl":null,"url":null,"abstract":"<div><div>In microgrids, stability is ensured by maintaining a power ratio that balances total energy production and demand via coordinated management of various distributed generation (DG) units. In recent years, there has been intense research on incorporating advanced techniques into control methods for microgrids. However, a thorough examination of the hierarchical control methods for various microgrid topologies is rarely addressed. Specifically, the interplay between control methodologies namely centralized, decentralized, and distributed across AC, DC, and hybrid microgrids has not been thoroughly explored. This study fills that gap by offering a comprehensive overview of microgrid architectures and hierarchical control methods, with a special emphasis on their application to various topologies. In contrast to previous studies, this study critically investigates how two popular control strategies namely droop control and virtual impedance strategies are implemented in parallel-connected inverters for efficient power sharing. We also highlight various approaches, challenges, limitations, advancements and a comparative analysis to direct further study and real-world implementations. This review is a helpful resource for researchers and practitioners looking to improve the stability and efficiency of microgrid systems using novel control techniques.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"25 ","pages":"Article 103799"},"PeriodicalIF":6.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123024020425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In microgrids, stability is ensured by maintaining a power ratio that balances total energy production and demand via coordinated management of various distributed generation (DG) units. In recent years, there has been intense research on incorporating advanced techniques into control methods for microgrids. However, a thorough examination of the hierarchical control methods for various microgrid topologies is rarely addressed. Specifically, the interplay between control methodologies namely centralized, decentralized, and distributed across AC, DC, and hybrid microgrids has not been thoroughly explored. This study fills that gap by offering a comprehensive overview of microgrid architectures and hierarchical control methods, with a special emphasis on their application to various topologies. In contrast to previous studies, this study critically investigates how two popular control strategies namely droop control and virtual impedance strategies are implemented in parallel-connected inverters for efficient power sharing. We also highlight various approaches, challenges, limitations, advancements and a comparative analysis to direct further study and real-world implementations. This review is a helpful resource for researchers and practitioners looking to improve the stability and efficiency of microgrid systems using novel control techniques.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信