Advances in UAV avionics systems architecture, classification and integration: A comprehensive review and future perspectives

IF 6 Q1 ENGINEERING, MULTIDISCIPLINARY
Hashim A. Hashim
{"title":"Advances in UAV avionics systems architecture, classification and integration: A comprehensive review and future perspectives","authors":"Hashim A. Hashim","doi":"10.1016/j.rineng.2024.103786","DOIUrl":null,"url":null,"abstract":"<div><div>Avionics systems of an Unmanned Aerial Vehicle (UAV) or drone are the critical electronic components found onboard that regulate, navigate, and control UAV travel while ensuring public safety. Contemporary UAV avionics work together to facilitate success of UAV missions by enabling stable communication, secure identification protocols, novel energy solutions, multi-sensor accurate perception and autonomous navigation, precise path planning, that guarantees collision avoidance, reliable trajectory control, and efficient data transfer within the UAV system. Moreover, special consideration must be given to electronic warfare threats prevention, detection, and mitigation, and the regulatory framework associated with UAV operations. This review presents the role and taxonomy of each UAV avionics system while covering shortcomings and benefits of available alternatives within each system. UAV communication systems, antennas, and location communication tracking are surveyed. Identification systems that respond to air-to-air or air-to-ground interrogating signals are presented. UAV classical and more innovative power sources are discussed. The rapid development of perception systems improves UAV autonomous navigation and control capabilities. The paper reviews common perception systems, navigation techniques, path planning approaches, obstacle avoidance methods, and tracking control. Modern electronic warfare uses advanced techniques and has to be counteracted by equally advanced methods to keep the public safe. Consequently, this work presents a detailed overview of common electronic warfare threats and state-of-the-art countermeasures and defensive aids. Furthermore, UAV safety occurrences are analyzed in the context of national regulatory framework and the certification process. Lastly, databus communication and standards for UAVs are reviewed as they enable efficient and fast real-time data transfer.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"25 ","pages":"Article 103786"},"PeriodicalIF":6.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123024020292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Avionics systems of an Unmanned Aerial Vehicle (UAV) or drone are the critical electronic components found onboard that regulate, navigate, and control UAV travel while ensuring public safety. Contemporary UAV avionics work together to facilitate success of UAV missions by enabling stable communication, secure identification protocols, novel energy solutions, multi-sensor accurate perception and autonomous navigation, precise path planning, that guarantees collision avoidance, reliable trajectory control, and efficient data transfer within the UAV system. Moreover, special consideration must be given to electronic warfare threats prevention, detection, and mitigation, and the regulatory framework associated with UAV operations. This review presents the role and taxonomy of each UAV avionics system while covering shortcomings and benefits of available alternatives within each system. UAV communication systems, antennas, and location communication tracking are surveyed. Identification systems that respond to air-to-air or air-to-ground interrogating signals are presented. UAV classical and more innovative power sources are discussed. The rapid development of perception systems improves UAV autonomous navigation and control capabilities. The paper reviews common perception systems, navigation techniques, path planning approaches, obstacle avoidance methods, and tracking control. Modern electronic warfare uses advanced techniques and has to be counteracted by equally advanced methods to keep the public safe. Consequently, this work presents a detailed overview of common electronic warfare threats and state-of-the-art countermeasures and defensive aids. Furthermore, UAV safety occurrences are analyzed in the context of national regulatory framework and the certification process. Lastly, databus communication and standards for UAVs are reviewed as they enable efficient and fast real-time data transfer.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信