The role of biodiesel in marine decarbonization: Technological innovations and ocean engineering challenges

IF 6 Q1 ENGINEERING, MULTIDISCIPLINARY
D. Christopher Selvam , T. Raja , Beemkumar Nagappan , Vijay J. Upadhye , J. Guntaj , Yuvarajan Devarajan , Ruby Mishra
{"title":"The role of biodiesel in marine decarbonization: Technological innovations and ocean engineering challenges","authors":"D. Christopher Selvam ,&nbsp;T. Raja ,&nbsp;Beemkumar Nagappan ,&nbsp;Vijay J. Upadhye ,&nbsp;J. Guntaj ,&nbsp;Yuvarajan Devarajan ,&nbsp;Ruby Mishra","doi":"10.1016/j.rineng.2025.103974","DOIUrl":null,"url":null,"abstract":"<div><div>The maritime sector, which contributes approximately 3 % to the total global greenhouse gas (GHG) emissions, is under increasing scrutiny to meet the decarbonization targets set forth by the International Maritime Organization (IMO) for the year 2050. Biodiesel, characterized by its renewable attributes and potential to diminish GHG emissions by as much as 80 %, emerges as a plausible alternative to traditional marine fuels. This research conducts a comprehensive analysis of the significance of biodiesel in the context of marine decarbonization, accentuating its benefits, which include reductions in Nitrogen oxide (Nox) emissions by up to 40 % and enhancements in fuel efficiency ranging from 3 % to 5 %, achieved through advancements such as nanoparticle additives and hybrid engine technologies. The study identifies challenges associated with biodiesel, including its 10 % to 12 % lower energy density and suboptimal cold flow characteristics, while proposing solutions that encompass innovative additives and thermal management strategies. The discourse further encompasses policy implications, logistical considerations of the supply chain, and the exploration of emerging feedstocks, notably algae-derived biodiesel. These insights establish biodiesel as a pragmatic, scalable, and ecologically sustainable fuel alternative for the maritime sector while delineating avenues to mitigate technological and operational challenges.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"25 ","pages":"Article 103974"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123025000623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The maritime sector, which contributes approximately 3 % to the total global greenhouse gas (GHG) emissions, is under increasing scrutiny to meet the decarbonization targets set forth by the International Maritime Organization (IMO) for the year 2050. Biodiesel, characterized by its renewable attributes and potential to diminish GHG emissions by as much as 80 %, emerges as a plausible alternative to traditional marine fuels. This research conducts a comprehensive analysis of the significance of biodiesel in the context of marine decarbonization, accentuating its benefits, which include reductions in Nitrogen oxide (Nox) emissions by up to 40 % and enhancements in fuel efficiency ranging from 3 % to 5 %, achieved through advancements such as nanoparticle additives and hybrid engine technologies. The study identifies challenges associated with biodiesel, including its 10 % to 12 % lower energy density and suboptimal cold flow characteristics, while proposing solutions that encompass innovative additives and thermal management strategies. The discourse further encompasses policy implications, logistical considerations of the supply chain, and the exploration of emerging feedstocks, notably algae-derived biodiesel. These insights establish biodiesel as a pragmatic, scalable, and ecologically sustainable fuel alternative for the maritime sector while delineating avenues to mitigate technological and operational challenges.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信