Relating description complexity to entropy

IF 0.9 3区 计算机科学 Q1 BUSINESS, FINANCE
Reijo Jaakkola , Antti Kuusisto , Miikka Vilander
{"title":"Relating description complexity to entropy","authors":"Reijo Jaakkola ,&nbsp;Antti Kuusisto ,&nbsp;Miikka Vilander","doi":"10.1016/j.jcss.2024.103615","DOIUrl":null,"url":null,"abstract":"<div><div>We demonstrate novel links between entropy and description complexity, a notion referring to the minimal formula length for specifying given properties. Let PLC denote propositional logic with the ability to count assignments, and let <span><math><msup><mrow><mi>PLC</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> be the fragment that counts only to one, essentially quantifying assignments. In the finite, <span><math><msup><mrow><mi>PLC</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> is expressively complete for specifying sets of variable assignments, while PLC is expressively complete for multisets. We show that for both logics, the model classes with maximal Boltzmann entropy are the ones with maximal description complexity. Concerning PLC, we show that expected Boltzmann entropy is asymptotically equivalent to expected description complexity multiplied by the number of proposition symbols considered. For contrast, we prove this link breaks for first-order logic over vocabularies with higher-arity relations. Our results relate to links between Kolmogorov complexity and entropy, providing analogous results in the logic-based scenario with relational structures classified by formulas of different sizes.</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"149 ","pages":"Article 103615"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000024001107","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

We demonstrate novel links between entropy and description complexity, a notion referring to the minimal formula length for specifying given properties. Let PLC denote propositional logic with the ability to count assignments, and let PLC1 be the fragment that counts only to one, essentially quantifying assignments. In the finite, PLC1 is expressively complete for specifying sets of variable assignments, while PLC is expressively complete for multisets. We show that for both logics, the model classes with maximal Boltzmann entropy are the ones with maximal description complexity. Concerning PLC, we show that expected Boltzmann entropy is asymptotically equivalent to expected description complexity multiplied by the number of proposition symbols considered. For contrast, we prove this link breaks for first-order logic over vocabularies with higher-arity relations. Our results relate to links between Kolmogorov complexity and entropy, providing analogous results in the logic-based scenario with relational structures classified by formulas of different sizes.
将描述复杂性与熵联系起来
我们展示了熵和描述复杂性之间的新联系,描述复杂性是指用于指定给定属性的最小公式长度的概念。设PLC表示具有计算赋值能力的命题逻辑,并设PLC1为仅计数为1的片段,本质上是对赋值进行量化。在有限条件下,PLC1对于指定变量赋值集是表达完备的,而PLC对于多集是表达完备的。我们证明了对于这两种逻辑,具有最大玻尔兹曼熵的模型类具有最大的描述复杂度。对于PLC,我们证明了期望玻尔兹曼熵渐近等价于期望描述复杂度乘以所考虑的命题符号数。相比之下,我们证明了在具有更高关系的词汇表上的一阶逻辑上这种链接会中断。我们的研究结果与Kolmogorov复杂度和熵之间的联系有关,在基于逻辑的场景中,通过不同大小的公式分类的关系结构提供了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信