Hybridization of stochastic hydrological models and machine learning methods for improving rainfall-runoff modeling

IF 6 Q1 ENGINEERING, MULTIDISCIPLINARY
Sianou Ezéckiel Houénafa , Olatunji Johnson , Erick K. Ronoh , Stephen E. Moore
{"title":"Hybridization of stochastic hydrological models and machine learning methods for improving rainfall-runoff modeling","authors":"Sianou Ezéckiel Houénafa ,&nbsp;Olatunji Johnson ,&nbsp;Erick K. Ronoh ,&nbsp;Stephen E. Moore","doi":"10.1016/j.rineng.2025.104079","DOIUrl":null,"url":null,"abstract":"<div><div>Accurately simulating river discharge remains a challenge. Hybrid models combining hydrological models with machine learning improve discharge simulation and offer better interpretability than standalone machine learning models. However, the commonly used models are deterministic. This study introduces an innovative extension to stochastic hydrological models, offering a novel combination that has not been previously explored. The proposed approach predicts discharge by integrating the simulated statistical properties of daily discharge probability distributions, derived from a stochastic rainfall-runoff model, into machine learning frameworks. This integration allows the machine learning models to incorporate insights from the uncertainties in discharge, thereby enhancing predictive accuracy of discharge simulations. The hybridization presented combines the physically-based stochastic HyMoLAP (Sto. HyMoLAP) model with machine learning techniques, including Wavelet-based eXtreme Gradient Boosting (WXGBoost) and Wavelet-based Gated Recurrent Unit (WGRU). Evaluated on the Ouémé at Bonou river basin, Benin, the Sto. HyMoLAP-WGRU model shows the best predictive performance, especially for low and high discharges. It achieves an overall Nash-Sutcliffe Efficiency (NSE) of 0.896, which is 7.30% higher than the NSE of HyMoLAP, and 29.67% and 259.71% higher than those of the standalone machine learning models. The Combined Accuracy (CA) is 38.11, reflecting reductions of 19.81%, 42.30%, and 62.41% compared to the standalone models. The analyses show that the performance of hybrid models depends on the simulated discharge distribution properties used as input. They suggest that the hybridization approach could be particularly beneficial for runoff simulations in catchments subject to significant random fluctuations where point discharge simulation is challenging.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"25 ","pages":"Article 104079"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123025001677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately simulating river discharge remains a challenge. Hybrid models combining hydrological models with machine learning improve discharge simulation and offer better interpretability than standalone machine learning models. However, the commonly used models are deterministic. This study introduces an innovative extension to stochastic hydrological models, offering a novel combination that has not been previously explored. The proposed approach predicts discharge by integrating the simulated statistical properties of daily discharge probability distributions, derived from a stochastic rainfall-runoff model, into machine learning frameworks. This integration allows the machine learning models to incorporate insights from the uncertainties in discharge, thereby enhancing predictive accuracy of discharge simulations. The hybridization presented combines the physically-based stochastic HyMoLAP (Sto. HyMoLAP) model with machine learning techniques, including Wavelet-based eXtreme Gradient Boosting (WXGBoost) and Wavelet-based Gated Recurrent Unit (WGRU). Evaluated on the Ouémé at Bonou river basin, Benin, the Sto. HyMoLAP-WGRU model shows the best predictive performance, especially for low and high discharges. It achieves an overall Nash-Sutcliffe Efficiency (NSE) of 0.896, which is 7.30% higher than the NSE of HyMoLAP, and 29.67% and 259.71% higher than those of the standalone machine learning models. The Combined Accuracy (CA) is 38.11, reflecting reductions of 19.81%, 42.30%, and 62.41% compared to the standalone models. The analyses show that the performance of hybrid models depends on the simulated discharge distribution properties used as input. They suggest that the hybridization approach could be particularly beneficial for runoff simulations in catchments subject to significant random fluctuations where point discharge simulation is challenging.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信