Artificial intelligence-enhanced solubility predictions of greenhouse gases in ionic liquids: A review

IF 6 Q1 ENGINEERING, MULTIDISCIPLINARY
Bilal Kazmi , Syed Ali Ammar Taqvi , Dagmar Juchelkov , Guoxuan Li , Salman Raza Naqvi
{"title":"Artificial intelligence-enhanced solubility predictions of greenhouse gases in ionic liquids: A review","authors":"Bilal Kazmi ,&nbsp;Syed Ali Ammar Taqvi ,&nbsp;Dagmar Juchelkov ,&nbsp;Guoxuan Li ,&nbsp;Salman Raza Naqvi","doi":"10.1016/j.rineng.2024.103851","DOIUrl":null,"url":null,"abstract":"<div><div>Greenhouse gas emissions from human activities pose a significant threat to the ecosystem, causing climate change and ecological disruptions. Ionic liquids (ILs) show promise for gas separation and carbon capture, but predicting gas solubility in ILs is challenging due to limited data and complex thermodynamics. Artificial intelligence (AI) offers an innovative approach to improve the efficiency and accuracy of solubility predictions. This review analyzes recent advancements in AI-enabled solubility predictions, focusing on methodologies, models, and applications in gas separation and carbon capture. It examines artificial neural networks, deep learning models, and support vector machines for predicting solubility in ILs, and presents valuable results demonstrating the potential of these techniques. The study highlights AI's transformative power in understanding gas-IL interactions and inspiring environmentally friendly separation processes. It also discusses integrating AI-driven predictions with process modeling tools like Aspen Hysys and Aspen Plus, aiming to stimulate further research in gas separation technologies and pave the way for practical implementation.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"25 ","pages":"Article 103851"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123024020942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Greenhouse gas emissions from human activities pose a significant threat to the ecosystem, causing climate change and ecological disruptions. Ionic liquids (ILs) show promise for gas separation and carbon capture, but predicting gas solubility in ILs is challenging due to limited data and complex thermodynamics. Artificial intelligence (AI) offers an innovative approach to improve the efficiency and accuracy of solubility predictions. This review analyzes recent advancements in AI-enabled solubility predictions, focusing on methodologies, models, and applications in gas separation and carbon capture. It examines artificial neural networks, deep learning models, and support vector machines for predicting solubility in ILs, and presents valuable results demonstrating the potential of these techniques. The study highlights AI's transformative power in understanding gas-IL interactions and inspiring environmentally friendly separation processes. It also discusses integrating AI-driven predictions with process modeling tools like Aspen Hysys and Aspen Plus, aiming to stimulate further research in gas separation technologies and pave the way for practical implementation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信