Investigation of solid-liquid interface interactions in transition-metal chalcogenides in saline environments by ambient-pressure X-ray photoelectron spectroscopy for applications in desalination and mineral recovery

IF 8.3 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Danil W. Boukhvalov , Gianluca D'Olimpio , Tsotne Dadiani , Sergio Santoro , Anna Cupolillo , Chia-Nung Kuo , Chin Shan Lue , Maya Bar-Sadan , Tomáš Hrbek , Miquel Gamón Rodríguez , Michael Vorochta , Efrem Curcio , Antonio Politano
{"title":"Investigation of solid-liquid interface interactions in transition-metal chalcogenides in saline environments by ambient-pressure X-ray photoelectron spectroscopy for applications in desalination and mineral recovery","authors":"Danil W. Boukhvalov ,&nbsp;Gianluca D'Olimpio ,&nbsp;Tsotne Dadiani ,&nbsp;Sergio Santoro ,&nbsp;Anna Cupolillo ,&nbsp;Chia-Nung Kuo ,&nbsp;Chin Shan Lue ,&nbsp;Maya Bar-Sadan ,&nbsp;Tomáš Hrbek ,&nbsp;Miquel Gamón Rodríguez ,&nbsp;Michael Vorochta ,&nbsp;Efrem Curcio ,&nbsp;Antonio Politano","doi":"10.1016/j.desal.2025.118628","DOIUrl":null,"url":null,"abstract":"<div><div>Here, we report on ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) experiments aimed at exploring the complex surface interactions and dissolution behaviors of nanofillers in nanocomposites under high-salinity conditions pertinent to desalination and mineral recovery. <em>In situ</em> AP-XPS analysis at solid-liquid interfaces under near-ambient conditions provided experimental proof of salinity-induced partial dissolution and interactions with chloride ions, revealing the formation of complex surface-bound species. Transition-metal chalcogenides NiSe and CoSe were specifically selected as model nanofillers due to their potential in enhancing performance for membrane distillation (MD) and membrane crystallization (MCr) processes. Complementary density functional theory (DFT) simulations provided a detailed mechanistic understanding, offering a robust predictive framework validated by our experimental findings. This integrated approach elucidates critical physicochemical processes at the solid-liquid interface, guiding the design of more efficient and durable nanocomposite membranes for sustainable mineral recovery from brines.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"602 ","pages":"Article 118628"},"PeriodicalIF":8.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011916425001031","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Here, we report on ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) experiments aimed at exploring the complex surface interactions and dissolution behaviors of nanofillers in nanocomposites under high-salinity conditions pertinent to desalination and mineral recovery. In situ AP-XPS analysis at solid-liquid interfaces under near-ambient conditions provided experimental proof of salinity-induced partial dissolution and interactions with chloride ions, revealing the formation of complex surface-bound species. Transition-metal chalcogenides NiSe and CoSe were specifically selected as model nanofillers due to their potential in enhancing performance for membrane distillation (MD) and membrane crystallization (MCr) processes. Complementary density functional theory (DFT) simulations provided a detailed mechanistic understanding, offering a robust predictive framework validated by our experimental findings. This integrated approach elucidates critical physicochemical processes at the solid-liquid interface, guiding the design of more efficient and durable nanocomposite membranes for sustainable mineral recovery from brines.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Desalination
Desalination 工程技术-工程:化工
CiteScore
14.60
自引率
20.20%
发文量
619
审稿时长
41 days
期刊介绍: Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area. The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes. By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信