Surgical face masks as reinforcement to improve the tensile mode fracture toughness of reinforced concrete under three-point bending tests

IF 4.7 2区 工程技术 Q1 MECHANICS
Hadi Haeri , Jinwei Fu , Vahab Sarfarazi , Soheil Abharian , Haleh rasekh , Mohammad Rezaei , Manoj Khandelwal
{"title":"Surgical face masks as reinforcement to improve the tensile mode fracture toughness of reinforced concrete under three-point bending tests","authors":"Hadi Haeri ,&nbsp;Jinwei Fu ,&nbsp;Vahab Sarfarazi ,&nbsp;Soheil Abharian ,&nbsp;Haleh rasekh ,&nbsp;Mohammad Rezaei ,&nbsp;Manoj Khandelwal","doi":"10.1016/j.engfracmech.2024.110741","DOIUrl":null,"url":null,"abstract":"<div><div>A set of experimental three-point bending tests and numerical simulations for using surgical masks as reinforcing layers in concrete samples were carried out. Different samples were prepared for analysis with changes in the number and position of the masks. The tensile strength of concrete was measured at 2.1 MPa, while that of face musk was 4.3 MPa. In these samples, fracture patterns, maximum load, fracture toughness of state I, fracture energy, and external work at the point of peak load were investigated based on the theory of fracture mechanics. The fracture procedure of specimens without face masks evolves quicker than the specimens with face masks. When the face mask was situated upper the notch, the fracture toughness increased rapidly by increasing the face mask number. When one face mask was situated upper the notch, the fracture toughness decreases by increasing the distance between the face mask and the lower boundary. When the face mask goes through the notch, the fracture toughness has the maximum value. It decreases by increasing the distance between the face mask and the lower boundary. When two face masks exist in the model, the fracture toughness decreases by increasing the distance between the face mask and the lower boundary. In addition, the external work decreases by increasing the distance between two face masks.</div></div>","PeriodicalId":11576,"journal":{"name":"Engineering Fracture Mechanics","volume":"314 ","pages":"Article 110741"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013794424009044","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

A set of experimental three-point bending tests and numerical simulations for using surgical masks as reinforcing layers in concrete samples were carried out. Different samples were prepared for analysis with changes in the number and position of the masks. The tensile strength of concrete was measured at 2.1 MPa, while that of face musk was 4.3 MPa. In these samples, fracture patterns, maximum load, fracture toughness of state I, fracture energy, and external work at the point of peak load were investigated based on the theory of fracture mechanics. The fracture procedure of specimens without face masks evolves quicker than the specimens with face masks. When the face mask was situated upper the notch, the fracture toughness increased rapidly by increasing the face mask number. When one face mask was situated upper the notch, the fracture toughness decreases by increasing the distance between the face mask and the lower boundary. When the face mask goes through the notch, the fracture toughness has the maximum value. It decreases by increasing the distance between the face mask and the lower boundary. When two face masks exist in the model, the fracture toughness decreases by increasing the distance between the face mask and the lower boundary. In addition, the external work decreases by increasing the distance between two face masks.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
13.00%
发文量
606
审稿时长
74 days
期刊介绍: EFM covers a broad range of topics in fracture mechanics to be of interest and use to both researchers and practitioners. Contributions are welcome which address the fracture behavior of conventional engineering material systems as well as newly emerging material systems. Contributions on developments in the areas of mechanics and materials science strongly related to fracture mechanics are also welcome. Papers on fatigue are welcome if they treat the fatigue process using the methods of fracture mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信