A two-dimensional adaptive non-uniform discretization bond-based peridynamics for static and dynamic fracture in brittle materials

IF 4.7 2区 工程技术 Q1 MECHANICS
Xiao-Ping Zhou , Er-Bao Du
{"title":"A two-dimensional adaptive non-uniform discretization bond-based peridynamics for static and dynamic fracture in brittle materials","authors":"Xiao-Ping Zhou ,&nbsp;Er-Bao Du","doi":"10.1016/j.engfracmech.2024.110725","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a two-dimensional adaptive non-uniform discretization bond-based peridynamics is proposed, aimed at investigating the fracture behavior of brittle materials under static and dynamic conditions. The proposed method is grounded in Delaunay triangular discretization and utilizes the self-similarity principle to refine the damage location. The new contribution of this work is that the non-uniform discretization of computational domain can be achieved without knowing the crack propagation path in advance, and the adaptive refinement of the damage position through the proposed method can be better realized. Four numerical cases of static or dynamic fracture under two-dimensional conditions are investigated, and the numerical results obtained by the proposed method are in good agreement with those obtained by non-uniform discrete peridynamic methods with knowing crack propagation path in advance and other numerical methods, such as DYNA3D. The results show that the proposed method can well realize the tracking of crack propagation paths, and can handle problems such as dynamic fracture, complex structural fracture, multi-crack interaction, and so on.</div></div>","PeriodicalId":11576,"journal":{"name":"Engineering Fracture Mechanics","volume":"314 ","pages":"Article 110725"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013794424008889","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a two-dimensional adaptive non-uniform discretization bond-based peridynamics is proposed, aimed at investigating the fracture behavior of brittle materials under static and dynamic conditions. The proposed method is grounded in Delaunay triangular discretization and utilizes the self-similarity principle to refine the damage location. The new contribution of this work is that the non-uniform discretization of computational domain can be achieved without knowing the crack propagation path in advance, and the adaptive refinement of the damage position through the proposed method can be better realized. Four numerical cases of static or dynamic fracture under two-dimensional conditions are investigated, and the numerical results obtained by the proposed method are in good agreement with those obtained by non-uniform discrete peridynamic methods with knowing crack propagation path in advance and other numerical methods, such as DYNA3D. The results show that the proposed method can well realize the tracking of crack propagation paths, and can handle problems such as dynamic fracture, complex structural fracture, multi-crack interaction, and so on.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
13.00%
发文量
606
审稿时长
74 days
期刊介绍: EFM covers a broad range of topics in fracture mechanics to be of interest and use to both researchers and practitioners. Contributions are welcome which address the fracture behavior of conventional engineering material systems as well as newly emerging material systems. Contributions on developments in the areas of mechanics and materials science strongly related to fracture mechanics are also welcome. Papers on fatigue are welcome if they treat the fatigue process using the methods of fracture mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信