Powdered oat drink production by pulse spray drying

IF 7.2 Q1 FOOD SCIENCE & TECHNOLOGY
Adriana Dantas, Pere Gou, Marc Piella-Rifà, Xavier Felipe
{"title":"Powdered oat drink production by pulse spray drying","authors":"Adriana Dantas,&nbsp;Pere Gou,&nbsp;Marc Piella-Rifà,&nbsp;Xavier Felipe","doi":"10.1016/j.fufo.2024.100521","DOIUrl":null,"url":null,"abstract":"<div><div>Oat is a well-studied food known for its nutritional properties, which provide health benefits under regular consumption. The potential of a new spray drying technology (pulse spray drying, PSD) was explored in drying oat drinks. Additionally, feed solutions were dried by traditional spray drying (SD), and the effect of maltodextrin addition was assessed. Two types of powder samples were collected: the primary powder, from the main chamber; and the overall powder, after mixing both the powder from the main chamber and the powder from the cyclone separator. Some physicochemical properties of the powders and their morphological characteristics were examined. The analyses performed did not indicate significant differences between primary and overall powders. Maltodextrin-added powders from PSD presented higher moisture, water activity (a<sub>w</sub>), solubility, and particle size; and lower bulk and tapped densities, indicating a higher volume occupied by the particles. Color measurements (luminosity and chroma) differed between the drying treatments: a lighter coloration was observed in the SD group. Finally, images from scanning electron microscopy (SEM) revealed that the lower moisture content in the samples without maltodextrin led to a greater distribution of pores in the surface of particles. In conclusion, the data raised in this study suggest that using the PSD in combination with maltodextrin can be a good approach to dry vegetable drinks. However, other drying parameters need to be tested to improve the powder flow properties (e.g., airflow rate, atomization pressure, relative humidity, feed composition), as they are important characteristics during the processing.</div></div>","PeriodicalId":34474,"journal":{"name":"Future Foods","volume":"11 ","pages":"Article 100521"},"PeriodicalIF":7.2000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Foods","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666833524002247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Oat is a well-studied food known for its nutritional properties, which provide health benefits under regular consumption. The potential of a new spray drying technology (pulse spray drying, PSD) was explored in drying oat drinks. Additionally, feed solutions were dried by traditional spray drying (SD), and the effect of maltodextrin addition was assessed. Two types of powder samples were collected: the primary powder, from the main chamber; and the overall powder, after mixing both the powder from the main chamber and the powder from the cyclone separator. Some physicochemical properties of the powders and their morphological characteristics were examined. The analyses performed did not indicate significant differences between primary and overall powders. Maltodextrin-added powders from PSD presented higher moisture, water activity (aw), solubility, and particle size; and lower bulk and tapped densities, indicating a higher volume occupied by the particles. Color measurements (luminosity and chroma) differed between the drying treatments: a lighter coloration was observed in the SD group. Finally, images from scanning electron microscopy (SEM) revealed that the lower moisture content in the samples without maltodextrin led to a greater distribution of pores in the surface of particles. In conclusion, the data raised in this study suggest that using the PSD in combination with maltodextrin can be a good approach to dry vegetable drinks. However, other drying parameters need to be tested to improve the powder flow properties (e.g., airflow rate, atomization pressure, relative humidity, feed composition), as they are important characteristics during the processing.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Future Foods
Future Foods Agricultural and Biological Sciences-Food Science
CiteScore
8.60
自引率
0.00%
发文量
97
审稿时长
15 weeks
期刊介绍: Future Foods is a specialized journal that is dedicated to tackling the challenges posed by climate change and the need for sustainability in the realm of food production. The journal recognizes the imperative to transform current food manufacturing and consumption practices to meet the dietary needs of a burgeoning global population while simultaneously curbing environmental degradation. The mission of Future Foods is to disseminate research that aligns with the goal of fostering the development of innovative technologies and alternative food sources to establish more sustainable food systems. The journal is committed to publishing high-quality, peer-reviewed articles that contribute to the advancement of sustainable food practices. Abstracting and indexing: Scopus Directory of Open Access Journals (DOAJ) Emerging Sources Citation Index (ESCI) SCImago Journal Rank (SJR) SNIP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信