Activated carbons for flow electrode capacitive deionization (FCDI) – Morphological, electrochemical and rheological analysis

IF 8.3 1区 工程技术 Q1 ENGINEERING, CHEMICAL
H.M. Saif , B. Ferrández-Gómez , V.D. Alves , R.M. Huertas , G. Alemany-Molina , A. Viegas , E. Morallón , D. Cazorla-Amorós , J.G. Crespo , S. Pawlowski
{"title":"Activated carbons for flow electrode capacitive deionization (FCDI) – Morphological, electrochemical and rheological analysis","authors":"H.M. Saif ,&nbsp;B. Ferrández-Gómez ,&nbsp;V.D. Alves ,&nbsp;R.M. Huertas ,&nbsp;G. Alemany-Molina ,&nbsp;A. Viegas ,&nbsp;E. Morallón ,&nbsp;D. Cazorla-Amorós ,&nbsp;J.G. Crespo ,&nbsp;S. Pawlowski","doi":"10.1016/j.desal.2025.118638","DOIUrl":null,"url":null,"abstract":"<div><div>Flow electrode capacitive deionization (FCDI) is a desalination technology employing flowable carbon slurries to remove salt from an influent through the electro-sorption of ions at the surface of pores of activated carbon particles. This study presents an extensive morphological, electrochemical and rheological analysis of flow electrodes prepared using commercial (YP50F, YP80F, Norit, PAC) and lab-synthesized (KUA, PAC-OX) activated carbons. Simultaneous optimization of particle size, surface area, and surface chemistry of activated carbons is essential to enhance desalination efficiency in FCDI applications. The lab-made highly microporous activated carbon (KUA), prepared from a Spanish anthracite, exhibited a remarkably high specific surface area (~2800 m<sup>2</sup>/g) but required first a particle size reduction through ball milling (from 56 μm to 12 μm) for the respective flow electrodes to achieve flowability. The slurry of milled fine KUA (designated as KUA<img>F) shows a specific capacitance of 55 F/g, a 38-fold increase compared to its pristine form. The KUA-F flow electrode also achieved a maximum salt adsorption capacity of 185 mg/g, outperforming the leading commercial alternative (YP80F) by 26 %. The FCDI cell with the KUA-F flow electrode exhibited a desalination efficiency of 79 % at 15 wt% loading, surpassing YP80F by 29 %. In contrast, using PAC-OX (oxidized form of PAC), despite increasing oxygen functional groups and with relatively higher specific surface area, led only to a 2 % improvement in desalination performance, highlighting that oxidation alone at larger particle sizes and broader distribution is insufficient.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"602 ","pages":"Article 118638"},"PeriodicalIF":8.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011916425001134","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Flow electrode capacitive deionization (FCDI) is a desalination technology employing flowable carbon slurries to remove salt from an influent through the electro-sorption of ions at the surface of pores of activated carbon particles. This study presents an extensive morphological, electrochemical and rheological analysis of flow electrodes prepared using commercial (YP50F, YP80F, Norit, PAC) and lab-synthesized (KUA, PAC-OX) activated carbons. Simultaneous optimization of particle size, surface area, and surface chemistry of activated carbons is essential to enhance desalination efficiency in FCDI applications. The lab-made highly microporous activated carbon (KUA), prepared from a Spanish anthracite, exhibited a remarkably high specific surface area (~2800 m2/g) but required first a particle size reduction through ball milling (from 56 μm to 12 μm) for the respective flow electrodes to achieve flowability. The slurry of milled fine KUA (designated as KUAF) shows a specific capacitance of 55 F/g, a 38-fold increase compared to its pristine form. The KUA-F flow electrode also achieved a maximum salt adsorption capacity of 185 mg/g, outperforming the leading commercial alternative (YP80F) by 26 %. The FCDI cell with the KUA-F flow electrode exhibited a desalination efficiency of 79 % at 15 wt% loading, surpassing YP80F by 29 %. In contrast, using PAC-OX (oxidized form of PAC), despite increasing oxygen functional groups and with relatively higher specific surface area, led only to a 2 % improvement in desalination performance, highlighting that oxidation alone at larger particle sizes and broader distribution is insufficient.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Desalination
Desalination 工程技术-工程:化工
CiteScore
14.60
自引率
20.20%
发文量
619
审稿时长
41 days
期刊介绍: Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area. The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes. By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信