Silicalite-1 confined ultrafine nickel nanocrystals for efficient photothermal catalytic methane dry reforming

IF 3.9 2区 化学 Q2 CHEMISTRY, PHYSICAL
Yuhua Zhang , Qian Zhang , Yizhan Luo , Shaowen Wu
{"title":"Silicalite-1 confined ultrafine nickel nanocrystals for efficient photothermal catalytic methane dry reforming","authors":"Yuhua Zhang ,&nbsp;Qian Zhang ,&nbsp;Yizhan Luo ,&nbsp;Shaowen Wu","doi":"10.1016/j.mcat.2025.114844","DOIUrl":null,"url":null,"abstract":"<div><div>Full spectrum driven photothermal catalytic methane dry reforming is an effective strategy to realize the conversion of two greenhouse gases into fuels. In the meantime, metal sintering as well as carbon deposition affect the catalytic stability at high temperatures. Herein, sample of silicalite-1 molecular sieve confined ultrafine Ni nanoparticles (Ni@S-1) was prepared by one-step hydrothermal method for photothermal catalytic methane dry reforming. Only upon focused light irradiation, extremely high production of H<sub>2</sub> and CO (28.3 and 40.9 mmol g<sup>−1</sup> min<sup>−1</sup>) was achieved. The high photothermal catalytic activity is due to the photothermal conversion caused by strong plasma absorption and the activation of molecules by light irradiation. Compared with Ni loaded amorphous silicon oxide (Ni/SiO<sub>2</sub>), the strong confinement effect of S-1 enables Ni nanoparticles to maintain high dispersion and strong CO<sub>2</sub> adsorption at high temperatures, thereby improving catalytic stability. This research achievement provides an effective way to achieve efficient and stable dry reforming of methane.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"573 ","pages":"Article 114844"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823125000306","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Full spectrum driven photothermal catalytic methane dry reforming is an effective strategy to realize the conversion of two greenhouse gases into fuels. In the meantime, metal sintering as well as carbon deposition affect the catalytic stability at high temperatures. Herein, sample of silicalite-1 molecular sieve confined ultrafine Ni nanoparticles (Ni@S-1) was prepared by one-step hydrothermal method for photothermal catalytic methane dry reforming. Only upon focused light irradiation, extremely high production of H2 and CO (28.3 and 40.9 mmol g−1 min−1) was achieved. The high photothermal catalytic activity is due to the photothermal conversion caused by strong plasma absorption and the activation of molecules by light irradiation. Compared with Ni loaded amorphous silicon oxide (Ni/SiO2), the strong confinement effect of S-1 enables Ni nanoparticles to maintain high dispersion and strong CO2 adsorption at high temperatures, thereby improving catalytic stability. This research achievement provides an effective way to achieve efficient and stable dry reforming of methane.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Catalysis
Molecular Catalysis Chemical Engineering-Process Chemistry and Technology
CiteScore
6.90
自引率
10.90%
发文量
700
审稿时长
40 days
期刊介绍: Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are: Heterogeneous catalysis including immobilized molecular catalysts Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis Photo- and electrochemistry Theoretical aspects of catalysis analyzed by computational methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信