Biochar's multifaceted role in bioremediation of emerging contaminants and heavy metals in complex rhizospheric ecosystem

IF 4.1 2区 环境科学与生态学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Shiv Vendra Singh , Shivangi Raghuvanshi , Yogeshwar Singh , Krishna Kumar Yadav , Amel Gacem , Tony Manoj K. Nandipamu , Mohammad Khalid , Rashida Hameed , Rashmi Sharma , Debarati Datta , Saurabh Ghosh , Arpna Kumari , Ajay Kumar Singh , Biswajit Pramanick , Xiuxiu Zhang , Chongqing Wang , Maha A. Alreshidi
{"title":"Biochar's multifaceted role in bioremediation of emerging contaminants and heavy metals in complex rhizospheric ecosystem","authors":"Shiv Vendra Singh ,&nbsp;Shivangi Raghuvanshi ,&nbsp;Yogeshwar Singh ,&nbsp;Krishna Kumar Yadav ,&nbsp;Amel Gacem ,&nbsp;Tony Manoj K. Nandipamu ,&nbsp;Mohammad Khalid ,&nbsp;Rashida Hameed ,&nbsp;Rashmi Sharma ,&nbsp;Debarati Datta ,&nbsp;Saurabh Ghosh ,&nbsp;Arpna Kumari ,&nbsp;Ajay Kumar Singh ,&nbsp;Biswajit Pramanick ,&nbsp;Xiuxiu Zhang ,&nbsp;Chongqing Wang ,&nbsp;Maha A. Alreshidi","doi":"10.1016/j.ibiod.2025.106005","DOIUrl":null,"url":null,"abstract":"<div><div>Rising prevalence of emerging contaminants (ECs) and priority heavy metals (PHMs) poses grave threats to the health of the environment and humankind, majorly resulting from human activity such as mining, disposal of industrial wastes, and use of chemicals. These pollutants drastically reduce soil biodiversity, fertility, and crop yield, rendering agricultural goods hazardous. Biochar has recently received attention as a sustainable bioremediation solution for ECs and PHMs through diverse physical, chemical, and biological processes. Biochar has demonstrated significant bioremediation efficiency for PAHs, antibiotics, microplastics, and pesticides varied from 50 to 95% and 60–90% for PHMs in a wide range of ecosystems. The interactive mechanisms of complexation, precipitation, ion exchange, surface sorption, and electrostatic interaction, hydrophobic interaction electron donor and acceptor interaction altogether enhance contaminant immobilization and biodegradation. Furthermore, biochar has been shown to aid in the breakdown of contaminants while lowering the transportation and accessibility of heavy metals. Besides remediation, biochar improves the rhizospheric environment by enhancing plant growth, nutrient uptake, and soil vitality. Its ability to remove both heavy metals and organic pollutants from wastewater and soil matrices, and its influence on their bioavailability and transport, show the dual nature of biochar in restoring environments. This manuscript attempts to provide in-depth insight into the challenges that ECs and PHMs pose, the role of biochar in their removal, and delicate soil-plant-biochar interactions. The work here discusses these interacting effects, thus giving insight into the potential of biochar in the immobilization of ECs and PHMs through many interspecific reactions, and also the soil-plant-biochar interactions and possibilities for successful remediation.</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"198 ","pages":"Article 106005"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biodeterioration & Biodegradation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964830525000095","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Rising prevalence of emerging contaminants (ECs) and priority heavy metals (PHMs) poses grave threats to the health of the environment and humankind, majorly resulting from human activity such as mining, disposal of industrial wastes, and use of chemicals. These pollutants drastically reduce soil biodiversity, fertility, and crop yield, rendering agricultural goods hazardous. Biochar has recently received attention as a sustainable bioremediation solution for ECs and PHMs through diverse physical, chemical, and biological processes. Biochar has demonstrated significant bioremediation efficiency for PAHs, antibiotics, microplastics, and pesticides varied from 50 to 95% and 60–90% for PHMs in a wide range of ecosystems. The interactive mechanisms of complexation, precipitation, ion exchange, surface sorption, and electrostatic interaction, hydrophobic interaction electron donor and acceptor interaction altogether enhance contaminant immobilization and biodegradation. Furthermore, biochar has been shown to aid in the breakdown of contaminants while lowering the transportation and accessibility of heavy metals. Besides remediation, biochar improves the rhizospheric environment by enhancing plant growth, nutrient uptake, and soil vitality. Its ability to remove both heavy metals and organic pollutants from wastewater and soil matrices, and its influence on their bioavailability and transport, show the dual nature of biochar in restoring environments. This manuscript attempts to provide in-depth insight into the challenges that ECs and PHMs pose, the role of biochar in their removal, and delicate soil-plant-biochar interactions. The work here discusses these interacting effects, thus giving insight into the potential of biochar in the immobilization of ECs and PHMs through many interspecific reactions, and also the soil-plant-biochar interactions and possibilities for successful remediation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.60
自引率
10.40%
发文量
107
审稿时长
21 days
期刊介绍: International Biodeterioration and Biodegradation publishes original research papers and reviews on the biological causes of deterioration or degradation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信