MIL-88A(Fe) modified carriers induced iron autotrophic denitrification in intermittently-aerated MBBR for low C/N wastewater treatment

IF 4.1 2区 环境科学与生态学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Zhonghong Guo, Jiaqi Yang, Ya-nan Luan, Yue Yin, Feng Zhang, Changqing Liu
{"title":"MIL-88A(Fe) modified carriers induced iron autotrophic denitrification in intermittently-aerated MBBR for low C/N wastewater treatment","authors":"Zhonghong Guo,&nbsp;Jiaqi Yang,&nbsp;Ya-nan Luan,&nbsp;Yue Yin,&nbsp;Feng Zhang,&nbsp;Changqing Liu","doi":"10.1016/j.ibiod.2025.106009","DOIUrl":null,"url":null,"abstract":"<div><div>Iron-assisted wastewater treatment has garnered significant attentions due to its promising potential for nitrogen removal under low carbon/nitrogen (C/N) ratios. However, the continuous addition of iron would result in unacceptably high operational cost. Herein, the iron mental-organic frame (MIL-88A(Fe)) modified sponge (MS) was developed as a source of continuous reactive iron sites and integrated in an intermittently-aerated moving bed biofilm reactor (MBBR) to enhance nitrogen removal efficiency under low (C/N) ratios. The results demonstrated that the MS-assisted system achieved stable total nitrogen removal of 76.2 ± 6.0% without adding additional iron and carbon sources when the C/N was 3.5 ± 0.3. After MS addition, the electron transport system activity increased from 8.2 ± 0.9 μgO<sub>2</sub>/g/h to 12.7 ± 2.6 μgO<sub>2</sub>/g/h, and the scanning electron microscope images revealed that the MS were covered with biofilm. Meanwhile, iron autotrophic bacteria (<em>Thermomonas</em>, <em>Dechloromonas</em>) and heterotrophic denitrifying bacteria (<em>Candidatus_Competibacter</em>) were enriched in the MS-assisted system, confirming the successful inducing of iron autotrophic denitrification process inside the reactor. This study revealed the effect of MS addition on microbial community succession and their pollutants removal characteristics, offering a feasible strategy for low C/N wastewater treatment.</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"198 ","pages":"Article 106009"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biodeterioration & Biodegradation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964830525000137","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Iron-assisted wastewater treatment has garnered significant attentions due to its promising potential for nitrogen removal under low carbon/nitrogen (C/N) ratios. However, the continuous addition of iron would result in unacceptably high operational cost. Herein, the iron mental-organic frame (MIL-88A(Fe)) modified sponge (MS) was developed as a source of continuous reactive iron sites and integrated in an intermittently-aerated moving bed biofilm reactor (MBBR) to enhance nitrogen removal efficiency under low (C/N) ratios. The results demonstrated that the MS-assisted system achieved stable total nitrogen removal of 76.2 ± 6.0% without adding additional iron and carbon sources when the C/N was 3.5 ± 0.3. After MS addition, the electron transport system activity increased from 8.2 ± 0.9 μgO2/g/h to 12.7 ± 2.6 μgO2/g/h, and the scanning electron microscope images revealed that the MS were covered with biofilm. Meanwhile, iron autotrophic bacteria (Thermomonas, Dechloromonas) and heterotrophic denitrifying bacteria (Candidatus_Competibacter) were enriched in the MS-assisted system, confirming the successful inducing of iron autotrophic denitrification process inside the reactor. This study revealed the effect of MS addition on microbial community succession and their pollutants removal characteristics, offering a feasible strategy for low C/N wastewater treatment.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.60
自引率
10.40%
发文量
107
审稿时长
21 days
期刊介绍: International Biodeterioration and Biodegradation publishes original research papers and reviews on the biological causes of deterioration or degradation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信