Electrolyte-independent and sustained inorganic-rich layer with functional anion aggregates for stable lithium metal electrode

Xiaoyi Wang , Zhendong Li , Qinhao Mao , Shun Wu , Yifei Cheng , Yinping Qin , Zhenlian Chen , Zhe Peng , Xiayin Yao , Deyu Wang
{"title":"Electrolyte-independent and sustained inorganic-rich layer with functional anion aggregates for stable lithium metal electrode","authors":"Xiaoyi Wang ,&nbsp;Zhendong Li ,&nbsp;Qinhao Mao ,&nbsp;Shun Wu ,&nbsp;Yifei Cheng ,&nbsp;Yinping Qin ,&nbsp;Zhenlian Chen ,&nbsp;Zhe Peng ,&nbsp;Xiayin Yao ,&nbsp;Deyu Wang","doi":"10.1016/j.apmate.2024.100261","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium (Li) metal batteries (LMBs) featuring ultrahigh energy densities are expected as ones of the most prominent devices for future energy storage applications. Nevertheless, the practical application of LMBs is still plagued by the poor interfacial stability of Li metal anode. Inorganic-rich interlayer derived from anion decomposition in advanced liquid electrolytes is demonstrated as an efficient approach to stabilize the Li metal anode, however, is electrolyte-dependent with limited application conditions due to inappropriate electrolyte properties. Herein, an efficient structuration strategy is proposed to fabricate an electrolyte-independent and sustained inorganic-rich layer, by embedding a type of functional anion aggregates consisting of selected anions ionically bonded to polymerized cation clusters. The anion aggregates can progressively release anions to react with Li<sup>+</sup> and form key components boosting the structural stability and Li<sup>+</sup> transfer ability of the artificial layer upon cycling. This self-reinforcing working mechanism endows the artificial layer with a sustained inorganic-rich nature and promising Li protective ability during long-term cycling, while the electrolyte-independent property enables its applications in LMBs using conventional low concentration electrolytes and all-solid-state LMBs with significantly enhanced performances. This strategy establishes an alternative designing route of Li protective layers for reliable LMBs.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"4 1","pages":"Article 100261"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X24000927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium (Li) metal batteries (LMBs) featuring ultrahigh energy densities are expected as ones of the most prominent devices for future energy storage applications. Nevertheless, the practical application of LMBs is still plagued by the poor interfacial stability of Li metal anode. Inorganic-rich interlayer derived from anion decomposition in advanced liquid electrolytes is demonstrated as an efficient approach to stabilize the Li metal anode, however, is electrolyte-dependent with limited application conditions due to inappropriate electrolyte properties. Herein, an efficient structuration strategy is proposed to fabricate an electrolyte-independent and sustained inorganic-rich layer, by embedding a type of functional anion aggregates consisting of selected anions ionically bonded to polymerized cation clusters. The anion aggregates can progressively release anions to react with Li+ and form key components boosting the structural stability and Li+ transfer ability of the artificial layer upon cycling. This self-reinforcing working mechanism endows the artificial layer with a sustained inorganic-rich nature and promising Li protective ability during long-term cycling, while the electrolyte-independent property enables its applications in LMBs using conventional low concentration electrolytes and all-solid-state LMBs with significantly enhanced performances. This strategy establishes an alternative designing route of Li protective layers for reliable LMBs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信