Enhanced photoelectric and thermoelectric coupling factor in BiMn2O5 ferroelectric film

Aohan Xu , Chong Guo , Weiqi Qian , Chris R. Bowen , Ya Yang
{"title":"Enhanced photoelectric and thermoelectric coupling factor in BiMn2O5 ferroelectric film","authors":"Aohan Xu ,&nbsp;Chong Guo ,&nbsp;Weiqi Qian ,&nbsp;Chris R. Bowen ,&nbsp;Ya Yang","doi":"10.1016/j.apmate.2024.100260","DOIUrl":null,"url":null,"abstract":"<div><div>Ferroelectric film materials have attracted significant interest due to their potential for harvesting various forms of clean energy from natural environmental sources. However, the photoelectric performance of these materials is frequently constrained by heat generation during light absorption, resulting in significant thermal losses. Most of ferroelectric films produce photocurrent and thermocurrent with opposite polarity, thus weakening the coupled photo-thermoelectric output of the devices. Here we report on a LaNiO<sub>3</sub>/BiMn<sub>2</sub>O<sub>5</sub>(BMO)/ITO ferroelectric film to produce photocurrent and thermocurrent with the same polarity. The polarity of the photocurrent generated by the BMO film is shown to be determined solely by the direction of spontaneous polarization, overcoming the detrimental effect of Schottky barrier for energy harvesting in device. We propose a new strategy to enhance the coupling factor, thereby offering valuable new insights for optimizing the utilization of ferroelectric materials in both light and heat energy applications.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"4 1","pages":"Article 100260"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X24000915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ferroelectric film materials have attracted significant interest due to their potential for harvesting various forms of clean energy from natural environmental sources. However, the photoelectric performance of these materials is frequently constrained by heat generation during light absorption, resulting in significant thermal losses. Most of ferroelectric films produce photocurrent and thermocurrent with opposite polarity, thus weakening the coupled photo-thermoelectric output of the devices. Here we report on a LaNiO3/BiMn2O5(BMO)/ITO ferroelectric film to produce photocurrent and thermocurrent with the same polarity. The polarity of the photocurrent generated by the BMO film is shown to be determined solely by the direction of spontaneous polarization, overcoming the detrimental effect of Schottky barrier for energy harvesting in device. We propose a new strategy to enhance the coupling factor, thereby offering valuable new insights for optimizing the utilization of ferroelectric materials in both light and heat energy applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信