Yogesh Kumar Yadav , Mohammad Abu Shaz , Nilay Krishna Mukhopadhyay , Thakur Prasad Yadav
{"title":"Formation of B2 phase and its stability in equiatomic Al-Cu-Fe-Ni-Ti high entropy alloy","authors":"Yogesh Kumar Yadav , Mohammad Abu Shaz , Nilay Krishna Mukhopadhyay , Thakur Prasad Yadav","doi":"10.1016/j.jalmes.2024.100137","DOIUrl":null,"url":null,"abstract":"<div><div>In the present investigation, we synthesized a single-phase high-entropy alloy in Al-Cu-Fe-Ni-Ti system by melting of the individual metals using a radiofrequency induction furnace under an argon environment. The as-synthesized alloy showed the formation of a B2-type ordered phase with a lattice parameter of 0.289 nm. The mechanical stability of this single phase high-entropy alloy was investigated under high-energy ball milling. The milling was performed at a speed of 400 rpm for 10, 20, and 40 h under a hexane medium with a ball-to-powder ratio of 40:1. The formation of nano crystallites (∼ 10 nm sizes) body centered cubic (BCC) phase (disordered B2) has been observed after 40 h of ball milling, which has been confirmed by X-ray diffraction and transmission electron microscopic investigation. The equiatomic Al-Cu-Fe-Ni-Ti high entropy alloy structure is observed to be quite stable during mechanical milling up to 40 h; only grain refinements and lattice strain accumulation were observed with milling time.</div></div>","PeriodicalId":100753,"journal":{"name":"Journal of Alloys and Metallurgical Systems","volume":"8 ","pages":"Article 100137"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Metallurgical Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949917824000865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the present investigation, we synthesized a single-phase high-entropy alloy in Al-Cu-Fe-Ni-Ti system by melting of the individual metals using a radiofrequency induction furnace under an argon environment. The as-synthesized alloy showed the formation of a B2-type ordered phase with a lattice parameter of 0.289 nm. The mechanical stability of this single phase high-entropy alloy was investigated under high-energy ball milling. The milling was performed at a speed of 400 rpm for 10, 20, and 40 h under a hexane medium with a ball-to-powder ratio of 40:1. The formation of nano crystallites (∼ 10 nm sizes) body centered cubic (BCC) phase (disordered B2) has been observed after 40 h of ball milling, which has been confirmed by X-ray diffraction and transmission electron microscopic investigation. The equiatomic Al-Cu-Fe-Ni-Ti high entropy alloy structure is observed to be quite stable during mechanical milling up to 40 h; only grain refinements and lattice strain accumulation were observed with milling time.