A new vacuum-powered soft bending actuator with programmable variable curvatures

IF 7.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Wei Xiao , Can Xie , Yihua Xiao , Ke Tang , Zhangbo Wang , Dean Hu , Ruqi Ding , Zhongdong Jiao
{"title":"A new vacuum-powered soft bending actuator with programmable variable curvatures","authors":"Wei Xiao ,&nbsp;Can Xie ,&nbsp;Yihua Xiao ,&nbsp;Ke Tang ,&nbsp;Zhangbo Wang ,&nbsp;Dean Hu ,&nbsp;Ruqi Ding ,&nbsp;Zhongdong Jiao","doi":"10.1016/j.matdes.2025.113641","DOIUrl":null,"url":null,"abstract":"<div><div>Vacuum-powered actuators possess inherent security, reliability, and durability compared with positive-pressure-powered actuators. However, achieving the variable curvatures of such actuators with a single input is challenging and has rarely been reported so far. Herein, we develop a new vacuum-powered soft bending actuator (VPSBA) that can bend clockwise and anti-clockwise by tuning the interior angle of the chambers. The experimental results show that the actuator can yield a maximum bending angle of 127.7° and 171.5° for the interior angle of 76° and 104°, respectively. The finite element results show a great agreement with the experiment results. The maximum relative error between the FEM results and experiment results is about 8.8%. And we find that the maximum bending angle is affected by the geometrical parameters but actuating pressures. The actuating pressure and thickness of the front and back walls significantly affect the bending curvature. Consequently, a biarc approximation method, surrogate model, and multi-objective particle swarm algorithm are employed to realize the programmable variable curvatures of the VPSBA by tuning the actuating pressure and thickness of the front and back walls. We design successfully three VPSBAs whose deformation can accurately match arc and cosine curves with a single input.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"250 ","pages":"Article 113641"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127525000619","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Vacuum-powered actuators possess inherent security, reliability, and durability compared with positive-pressure-powered actuators. However, achieving the variable curvatures of such actuators with a single input is challenging and has rarely been reported so far. Herein, we develop a new vacuum-powered soft bending actuator (VPSBA) that can bend clockwise and anti-clockwise by tuning the interior angle of the chambers. The experimental results show that the actuator can yield a maximum bending angle of 127.7° and 171.5° for the interior angle of 76° and 104°, respectively. The finite element results show a great agreement with the experiment results. The maximum relative error between the FEM results and experiment results is about 8.8%. And we find that the maximum bending angle is affected by the geometrical parameters but actuating pressures. The actuating pressure and thickness of the front and back walls significantly affect the bending curvature. Consequently, a biarc approximation method, surrogate model, and multi-objective particle swarm algorithm are employed to realize the programmable variable curvatures of the VPSBA by tuning the actuating pressure and thickness of the front and back walls. We design successfully three VPSBAs whose deformation can accurately match arc and cosine curves with a single input.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials & Design
Materials & Design Engineering-Mechanical Engineering
CiteScore
14.30
自引率
7.10%
发文量
1028
审稿时长
85 days
期刊介绍: Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry. The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信