Coupling Enteromorpha prolifera-derived N-doped biochar with Cu-Mo2C clusters for selective CO2 hydrogenation to CO

Xueyuan Pan , Caikang Wang , Bei Li , Mingzhe Ma , Hao Sun , Guowu Zhan , Kui Wang , Mengmeng Fan , Linfei Ding , Gengtao Fu , Kang Sun , Jianchun Jiang
{"title":"Coupling Enteromorpha prolifera-derived N-doped biochar with Cu-Mo2C clusters for selective CO2 hydrogenation to CO","authors":"Xueyuan Pan ,&nbsp;Caikang Wang ,&nbsp;Bei Li ,&nbsp;Mingzhe Ma ,&nbsp;Hao Sun ,&nbsp;Guowu Zhan ,&nbsp;Kui Wang ,&nbsp;Mengmeng Fan ,&nbsp;Linfei Ding ,&nbsp;Gengtao Fu ,&nbsp;Kang Sun ,&nbsp;Jianchun Jiang","doi":"10.1016/j.apmate.2024.100259","DOIUrl":null,"url":null,"abstract":"<div><div>CO<sub>2</sub> conversion to CO <em>via</em> the reverse water-gas shift (RWGS) reaction is limited by a low CO<sub>2</sub> conversion rate and CO selectivity. Herein, an efficient RWGS catalyst is constructed through <em>Enteromorpha prolifera</em>–derived N-rich mesoporous biochar (EPBC) supported atomic-level Cu-Mo<sub>2</sub>C clusters (Cu-Mo<sub>2</sub>C/EPBC). Unlike traditional activated carbon (AC) supported Cu-Mo<sub>2</sub>C particles (Cu-Mo<sub>2</sub>C/AC), the Cu-Mo<sub>2</sub>C/EPBC not only presents the better graphitization degree and larger specific surface area, but also uniformly and firmly anchors atomic-level Cu-Mo<sub>2</sub>C clusters due to the existence of pyridine nitrogen. Furthermore, the pyridine N of Cu-Mo<sub>2</sub>C/EPBC strengthens an unblocked electron transfer between Mo<sub>2</sub>C and Cu clusters, as verified by X-ray absorption spectroscopy. As a result, the synergistic effect between pyridinic N anchoring and the clusters interaction in Cu-Mo<sub>2</sub>C/EPBC facilitates an improved CO selectivity of 99.95% at 500 ​°C compared with traditional Cu-Mo<sub>2</sub>C/AC (99.60%), as well as about 3-fold CO<sub>2</sub> conversion rate. Density functional theory calculations confirm that pyridine N-modified carbon activates the local electronic redistribution at Cu-Mo<sub>2</sub>C clusters, which contributes to the decreased energy barrier of the transition state of CO∗+O∗+2H∗, thereby triggering the transformation of rate-limited step during the redox pathway. This biomass-derived strategy opens perspective on producing sustainable fuels and building blocks through the RWGS reaction.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"4 1","pages":"Article 100259"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X24000903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

CO2 conversion to CO via the reverse water-gas shift (RWGS) reaction is limited by a low CO2 conversion rate and CO selectivity. Herein, an efficient RWGS catalyst is constructed through Enteromorpha prolifera–derived N-rich mesoporous biochar (EPBC) supported atomic-level Cu-Mo2C clusters (Cu-Mo2C/EPBC). Unlike traditional activated carbon (AC) supported Cu-Mo2C particles (Cu-Mo2C/AC), the Cu-Mo2C/EPBC not only presents the better graphitization degree and larger specific surface area, but also uniformly and firmly anchors atomic-level Cu-Mo2C clusters due to the existence of pyridine nitrogen. Furthermore, the pyridine N of Cu-Mo2C/EPBC strengthens an unblocked electron transfer between Mo2C and Cu clusters, as verified by X-ray absorption spectroscopy. As a result, the synergistic effect between pyridinic N anchoring and the clusters interaction in Cu-Mo2C/EPBC facilitates an improved CO selectivity of 99.95% at 500 ​°C compared with traditional Cu-Mo2C/AC (99.60%), as well as about 3-fold CO2 conversion rate. Density functional theory calculations confirm that pyridine N-modified carbon activates the local electronic redistribution at Cu-Mo2C clusters, which contributes to the decreased energy barrier of the transition state of CO∗+O∗+2H∗, thereby triggering the transformation of rate-limited step during the redox pathway. This biomass-derived strategy opens perspective on producing sustainable fuels and building blocks through the RWGS reaction.

Abstract Image

耦合浒苔衍生n掺杂生物炭与Cu-Mo2C簇选择性CO2加氢成CO
通过逆向水气转换(RWGS)反应将CO2转化为CO受到CO2转化率低和CO选择性低的限制。本文通过浒苔衍生的富n介孔生物炭(EPBC)支持原子级Cu-Mo2C簇(Cu-Mo2C/EPBC)构建了高效的RWGS催化剂。与传统活性炭(AC)负载的Cu-Mo2C颗粒(Cu-Mo2C/AC)不同,Cu-Mo2C/EPBC不仅具有更好的石墨化程度和更大的比表面积,而且由于吡啶氮的存在,Cu-Mo2C/EPBC可以均匀而牢固地锚定原子级Cu-Mo2C簇。此外,x射线吸收光谱证实,Cu-Mo2C/EPBC的吡啶N增强了Mo2C和Cu团簇之间的不受阻电子转移。结果表明,在Cu-Mo2C/EPBC中,吡啶N锚定与簇间相互作用的协同作用使得CO在500℃下的选择性比传统的Cu-Mo2C/AC(99.60%)提高了99.95%,CO2转化率提高了约3倍。密度泛函理论计算证实,吡啶n修饰碳激活Cu-Mo2C簇的局部电子重分布,导致CO∗+O∗+2H∗过渡态的能垒降低,从而触发氧化还原途径中速率限制步骤的转变。这种生物质衍生战略为通过RWGS反应生产可持续燃料和构建模块开辟了前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信