Process intensification of biodiesel production by optimization using box-behnken design: A review

IF 3.8 3区 工程技术 Q3 ENERGY & FUELS
Is Fatimah , Jaka Nugraha , Suresh Sagadevan , Azlan Kamari , Won-Chun Oh
{"title":"Process intensification of biodiesel production by optimization using box-behnken design: A review","authors":"Is Fatimah ,&nbsp;Jaka Nugraha ,&nbsp;Suresh Sagadevan ,&nbsp;Azlan Kamari ,&nbsp;Won-Chun Oh","doi":"10.1016/j.cep.2024.110110","DOIUrl":null,"url":null,"abstract":"<div><div>Biodiesel is one of the renewable energy sources that is widely sought as an alternative to the limitations of fossil energy. Efforts to explore biodiesel production have been considered from various factors including the search for inedible and abundant natural materials, the use of high-performance catalysts, the use of low-cost materials as catalyst materials, and various intensification methods. In terms of production intensification, in addition to the use of multiple methods such as microwaves and ultrasonics, optimization using a statistical approach is one of the strategies used. Optimization aims to model production performance as a function of various significant reaction variables including the ratio of alcohol to oil, reaction temperature, reaction time, catalyst percentage, and other specific variables. In this review, the use of statistical optimization using Box-Behnken Design (BBD) as part of the Response Surface Methodology is studied. The review explains the principles of BBD and compares them to other statistical optimization methods. The important thing highlighted in this review is the critical analysis of several studies that provide data ambiguity. The review provides methodological recommendations for future development.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"208 ","pages":"Article 110110"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270124004483","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Biodiesel is one of the renewable energy sources that is widely sought as an alternative to the limitations of fossil energy. Efforts to explore biodiesel production have been considered from various factors including the search for inedible and abundant natural materials, the use of high-performance catalysts, the use of low-cost materials as catalyst materials, and various intensification methods. In terms of production intensification, in addition to the use of multiple methods such as microwaves and ultrasonics, optimization using a statistical approach is one of the strategies used. Optimization aims to model production performance as a function of various significant reaction variables including the ratio of alcohol to oil, reaction temperature, reaction time, catalyst percentage, and other specific variables. In this review, the use of statistical optimization using Box-Behnken Design (BBD) as part of the Response Surface Methodology is studied. The review explains the principles of BBD and compares them to other statistical optimization methods. The important thing highlighted in this review is the critical analysis of several studies that provide data ambiguity. The review provides methodological recommendations for future development.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.80
自引率
9.30%
发文量
408
审稿时长
49 days
期刊介绍: Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信