Low-cost and efficient synthesis of SSZ-35 zeolite through a seed-assisted approach

IF 3.8 3区 工程技术 Q3 ENERGY & FUELS
Peng Dong , Huanliu Wu , Longhua Luo , Qingyan Cui , Tiesen Li , Jie Shi , Yuanyuan Yue
{"title":"Low-cost and efficient synthesis of SSZ-35 zeolite through a seed-assisted approach","authors":"Peng Dong ,&nbsp;Huanliu Wu ,&nbsp;Longhua Luo ,&nbsp;Qingyan Cui ,&nbsp;Tiesen Li ,&nbsp;Jie Shi ,&nbsp;Yuanyuan Yue","doi":"10.1016/j.cep.2024.110122","DOIUrl":null,"url":null,"abstract":"<div><div>A low-cost and process-intensified synthesis approach of SSZ-35 zeolite via a seed-assisted method is presented. This approach involves the development of a relatively inexpensive template and the application of seeds to minimize crystallization time and template consumption. Herein, N-Ethyl, N-methyl 2,6-cis-dimethylpiperidinium hydroxide (EMDMPOH) is selected as a template to synthesize SSZ-35 zeolite, and a simplified and optimized scheme for the preparation of such a template is proposed. Specially, the high-purity EMDMPOH is prepared by a sequential alkylation of 2,6-dimethylpiperidine with iodoethane and iodomethane, followed by ion exchange. By employing a seed-assisted strategy, the synthesis process of SSZ-35 zeolite is intensified, resulting in a significant reduction in crystallization time from 7 d to 75 h. Systematic characterizations reveal that the synthesized SSZ-35 zeolite has smaller crystals and larger specific surface area in comparison with the reference sample, leading to enhanced selectivity in n-octane hydroisomerization. Moreover, the cost accounting analysis shows a notable decrease in the synthesis cost of SSZ-35 zeolite by using the synthesis route that combines the simplified process for preparing the template and the reduced amount of template.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"208 ","pages":"Article 110122"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270124004604","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

A low-cost and process-intensified synthesis approach of SSZ-35 zeolite via a seed-assisted method is presented. This approach involves the development of a relatively inexpensive template and the application of seeds to minimize crystallization time and template consumption. Herein, N-Ethyl, N-methyl 2,6-cis-dimethylpiperidinium hydroxide (EMDMPOH) is selected as a template to synthesize SSZ-35 zeolite, and a simplified and optimized scheme for the preparation of such a template is proposed. Specially, the high-purity EMDMPOH is prepared by a sequential alkylation of 2,6-dimethylpiperidine with iodoethane and iodomethane, followed by ion exchange. By employing a seed-assisted strategy, the synthesis process of SSZ-35 zeolite is intensified, resulting in a significant reduction in crystallization time from 7 d to 75 h. Systematic characterizations reveal that the synthesized SSZ-35 zeolite has smaller crystals and larger specific surface area in comparison with the reference sample, leading to enhanced selectivity in n-octane hydroisomerization. Moreover, the cost accounting analysis shows a notable decrease in the synthesis cost of SSZ-35 zeolite by using the synthesis route that combines the simplified process for preparing the template and the reduced amount of template.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.80
自引率
9.30%
发文量
408
审稿时长
49 days
期刊介绍: Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信