Ilya Lyagin, Olga Maslova, Nikolay Stepanov, Olga Senko, Elena Efremenko
{"title":"Reassessing of enzymes degrading mycotoxins at acidic pH","authors":"Ilya Lyagin, Olga Maslova, Nikolay Stepanov, Olga Senko, Elena Efremenko","doi":"10.1016/j.ibiod.2024.105994","DOIUrl":null,"url":null,"abstract":"<div><div>Mycotoxins contaminate different commodities, thus endangering well being of humans and animals. In the present study, three enzymes – peroxidase, laccase, and glucose oxidase – were reanalyzed using computer modeling for their catalytic activity at acidic pH in a sample group of 18 mycotoxins. Fungal glucose oxidase was found to be catalytically active with the largest number of mycotoxins tested <em>in silico</em> according to results of molecular docking, and was further selected for <em>in vitro</em> experiments. Initially glucose oxidase activity was measured with AChE assay and later it was coupled to horseradish peroxidase for direct detection of mycotoxin transformations (three substrates and three non-substrates). On the basis of these results, it became possible to generalize and formulate model predicting Michaelis constants of glucose oxidase towards some other possible substrates, including mycotoxins not tested currently <em>in vitro</em>. The glucose oxidase showing maximal activity at approximately pH 5.5 can be potentially applied not only to detect mycotoxins at acidic pHs (e.g., when combining with peroxidase and chromophore/fluorophore co-substrate) but also to treat them enzymatically (e.g., during silaging).</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"198 ","pages":"Article 105994"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biodeterioration & Biodegradation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964830524002658","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mycotoxins contaminate different commodities, thus endangering well being of humans and animals. In the present study, three enzymes – peroxidase, laccase, and glucose oxidase – were reanalyzed using computer modeling for their catalytic activity at acidic pH in a sample group of 18 mycotoxins. Fungal glucose oxidase was found to be catalytically active with the largest number of mycotoxins tested in silico according to results of molecular docking, and was further selected for in vitro experiments. Initially glucose oxidase activity was measured with AChE assay and later it was coupled to horseradish peroxidase for direct detection of mycotoxin transformations (three substrates and three non-substrates). On the basis of these results, it became possible to generalize and formulate model predicting Michaelis constants of glucose oxidase towards some other possible substrates, including mycotoxins not tested currently in vitro. The glucose oxidase showing maximal activity at approximately pH 5.5 can be potentially applied not only to detect mycotoxins at acidic pHs (e.g., when combining with peroxidase and chromophore/fluorophore co-substrate) but also to treat them enzymatically (e.g., during silaging).
期刊介绍:
International Biodeterioration and Biodegradation publishes original research papers and reviews on the biological causes of deterioration or degradation.