Jooho Lee, Seonhong Kim, Jihwan Shin, Jaemoon Yoon, Jinheong Ahn, Minjae Kim
{"title":"Experiment and modeling of submarine emergency rising motion using free-running model","authors":"Jooho Lee, Seonhong Kim, Jihwan Shin, Jaemoon Yoon, Jinheong Ahn, Minjae Kim","doi":"10.1016/j.ijnaoe.2024.100641","DOIUrl":null,"url":null,"abstract":"<div><div>Development of submarine and its safe operational envelope requires an understanding of motion characteristics including emergency rising motion. In this study, the emergency rising motion is investigated using submarine free-running model equipped with ballast systems. The emergency rising test was conducted according to the initial vehicle speed, yaw rate, depth, ballast water discharge ratio and time interval between bow and stern ballast systems. Experimental results reveal that the maximum pitch angle before surface is affected by initial velocity and the operation conditions of ballast systems. In addition, excessive roll occurs after the surface when the submarine passes through the water surface at a negative pitch angle. Furthermore, the system parameters that comprise the emergency rising model are estimated using the collected test data. The identified model is verified by comparing emergency rising simulation with the free-running model test results.</div></div>","PeriodicalId":14160,"journal":{"name":"International Journal of Naval Architecture and Ocean Engineering","volume":"17 ","pages":"Article 100641"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Naval Architecture and Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2092678224000608","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
Development of submarine and its safe operational envelope requires an understanding of motion characteristics including emergency rising motion. In this study, the emergency rising motion is investigated using submarine free-running model equipped with ballast systems. The emergency rising test was conducted according to the initial vehicle speed, yaw rate, depth, ballast water discharge ratio and time interval between bow and stern ballast systems. Experimental results reveal that the maximum pitch angle before surface is affected by initial velocity and the operation conditions of ballast systems. In addition, excessive roll occurs after the surface when the submarine passes through the water surface at a negative pitch angle. Furthermore, the system parameters that comprise the emergency rising model are estimated using the collected test data. The identified model is verified by comparing emergency rising simulation with the free-running model test results.
期刊介绍:
International Journal of Naval Architecture and Ocean Engineering provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; underwater acoustics; ocean remote sensing; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; subsea engineering; and specialized watercraft engineering.