Son Tung Vu , Thai Duong Nguyen , Hai Van Dang , Van Suong Nguyen
{"title":"Adaptive neural network fault-tolerant sliding mode control for ship berthing with actuator faults and input saturation","authors":"Son Tung Vu , Thai Duong Nguyen , Hai Van Dang , Van Suong Nguyen","doi":"10.1016/j.ijnaoe.2025.100644","DOIUrl":null,"url":null,"abstract":"<div><div>This paper develops a robust controller for automatic ship berthing subjected to actuator faults, input saturation, modeling uncertainties, and external disturbances. First, sliding mode control (SMC) is used as a core controller to provide robust features for the ship berthing system. Second, fault-tolerant control (FTC) is combined with the controller to face the actuator faults. Third, the radial basis function (RBF) neural network is employed to approximate the modeling uncertainties while the effect of external disturbances is compensated by an adaptive control technique. In addition, an anti-saturation auxiliary system is conducted to deal with the input saturation for physical limitations of the actuators. Finally, numerical simulation and comparison of the results with the other control approaches are carried out to highlight the advantages of the proposed controller.</div></div>","PeriodicalId":14160,"journal":{"name":"International Journal of Naval Architecture and Ocean Engineering","volume":"17 ","pages":"Article 100644"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Naval Architecture and Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2092678225000020","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper develops a robust controller for automatic ship berthing subjected to actuator faults, input saturation, modeling uncertainties, and external disturbances. First, sliding mode control (SMC) is used as a core controller to provide robust features for the ship berthing system. Second, fault-tolerant control (FTC) is combined with the controller to face the actuator faults. Third, the radial basis function (RBF) neural network is employed to approximate the modeling uncertainties while the effect of external disturbances is compensated by an adaptive control technique. In addition, an anti-saturation auxiliary system is conducted to deal with the input saturation for physical limitations of the actuators. Finally, numerical simulation and comparison of the results with the other control approaches are carried out to highlight the advantages of the proposed controller.
期刊介绍:
International Journal of Naval Architecture and Ocean Engineering provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; underwater acoustics; ocean remote sensing; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; subsea engineering; and specialized watercraft engineering.