Yifeng Wang , Teklu Hadgu , Boris Faybishenko , Jon Harrington , Elena Tamayo-Mas , Kristopher L. Kuhlman , Carlos F. Jove-Colon
{"title":"Soft interface instability and gas flow channeling in low-permeability deformable media","authors":"Yifeng Wang , Teklu Hadgu , Boris Faybishenko , Jon Harrington , Elena Tamayo-Mas , Kristopher L. Kuhlman , Carlos F. Jove-Colon","doi":"10.1016/j.gete.2024.100622","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding gas percolation through a clay layer or a shale formation is of great importance for the development of a geologic repository for nuclear waste disposal, a subsurface system for gas storage, and an engineering approach for hydrocarbon extraction from unconventional reservoirs. Gas injection experiments have revealed complex dynamic behaviours of gas percolation through water saturated compacted bentonite, characterized by a high breakthrough pressure, rapid breakthrough, a pressure/stress decay after the breakthrough, a relatively high migration rate, high-frequency periodic/nonperiodic variations in flow rate, stepwise rate reductions during relaxation, and low gas saturation over the whole process, all indicating channelling nature of the processes. Using linear stability analyses, we show that this channelling can autonomously emerge from the instability of the deformable interface between the injected gas and the compacted bentonite matrix driven by local stress concentration, pore dilation, and hydrologic gradient. Channel patterns formed would possess a fractal geometry. We further show that, once a percolating channel is established, the gas injected would percolate through the channel in a chain of gas bubbles, also due to the interface instability, resulting in periodic/chaotic variations in gas flow rate. Our work provides a unified explanation for key features observed for gas percolation in low-permeability deformable media. The work also suggests a possibility of designing an engineered barrier system for a nuclear waste repository that can have controllable gas release while limit water transport.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"40 ","pages":"Article 100622"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380824000893","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding gas percolation through a clay layer or a shale formation is of great importance for the development of a geologic repository for nuclear waste disposal, a subsurface system for gas storage, and an engineering approach for hydrocarbon extraction from unconventional reservoirs. Gas injection experiments have revealed complex dynamic behaviours of gas percolation through water saturated compacted bentonite, characterized by a high breakthrough pressure, rapid breakthrough, a pressure/stress decay after the breakthrough, a relatively high migration rate, high-frequency periodic/nonperiodic variations in flow rate, stepwise rate reductions during relaxation, and low gas saturation over the whole process, all indicating channelling nature of the processes. Using linear stability analyses, we show that this channelling can autonomously emerge from the instability of the deformable interface between the injected gas and the compacted bentonite matrix driven by local stress concentration, pore dilation, and hydrologic gradient. Channel patterns formed would possess a fractal geometry. We further show that, once a percolating channel is established, the gas injected would percolate through the channel in a chain of gas bubbles, also due to the interface instability, resulting in periodic/chaotic variations in gas flow rate. Our work provides a unified explanation for key features observed for gas percolation in low-permeability deformable media. The work also suggests a possibility of designing an engineered barrier system for a nuclear waste repository that can have controllable gas release while limit water transport.
期刊介绍:
The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources.
The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.