Shubo Gao , Weiming Ji , Qi Zhu , Asker Jarlöv , Xiaojun Shen , Xueyu Bai , Chenyang Zhu , Yung Zhen Lek , Zhongmin Xiao , Kun Zhou
{"title":"Pulsed-wave laser additive manufacturing of CrCoNi medium-entropy alloys with high strength and ductility","authors":"Shubo Gao , Weiming Ji , Qi Zhu , Asker Jarlöv , Xiaojun Shen , Xueyu Bai , Chenyang Zhu , Yung Zhen Lek , Zhongmin Xiao , Kun Zhou","doi":"10.1016/j.mattod.2024.10.004","DOIUrl":null,"url":null,"abstract":"<div><div>One of the most popular medium- and high-entropy alloys is CrCoNi alloy, renowned for its outstanding mechanical properties, particularly at cryogenic temperatures. However, further enhancing the yield strength of CrCoNi at room temperature while maintaining its high ductility remains challenging. In this study, we explore the potential of using a pulsed-wave laser in the powder bed fusion, a dominant metal additive manufacturing (AM) technique, to achieve exceptional room-temperature strength–ductility synergy in CrCoNi alloy. The pulsed-wave laser induces extra thermal cycles, generating additional pre-existing dislocations that are uniformly distributed within the interiors of solidification cells, a phenomenon distinct from conventional AM. These pre-existing dislocations not only enhance the room-temperature yield strength exceeding 800 MPa but also trigger the onset of deformation twinning prior to 2% strain. This early activation of deformation twinning contributes to steady work hardening throughout the entire plastic deformation, resulting in a large uniform elongation of nearly 40%. Our work offers valuable insights for designing novel AM processes with pulsed-wave lasers to advance the fabrication of high-value and high-performance alloys.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"81 ","pages":"Pages 36-46"},"PeriodicalIF":21.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124002281","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
One of the most popular medium- and high-entropy alloys is CrCoNi alloy, renowned for its outstanding mechanical properties, particularly at cryogenic temperatures. However, further enhancing the yield strength of CrCoNi at room temperature while maintaining its high ductility remains challenging. In this study, we explore the potential of using a pulsed-wave laser in the powder bed fusion, a dominant metal additive manufacturing (AM) technique, to achieve exceptional room-temperature strength–ductility synergy in CrCoNi alloy. The pulsed-wave laser induces extra thermal cycles, generating additional pre-existing dislocations that are uniformly distributed within the interiors of solidification cells, a phenomenon distinct from conventional AM. These pre-existing dislocations not only enhance the room-temperature yield strength exceeding 800 MPa but also trigger the onset of deformation twinning prior to 2% strain. This early activation of deformation twinning contributes to steady work hardening throughout the entire plastic deformation, resulting in a large uniform elongation of nearly 40%. Our work offers valuable insights for designing novel AM processes with pulsed-wave lasers to advance the fabrication of high-value and high-performance alloys.
期刊介绍:
Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field.
We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.