Molybdenite Re-Os geochronology and conditions of formation of potassic and sodic-calcic alteration associated with the Plaka porphyry Mo-Cu system, Lavrion, Greece
Panagiotis Voudouris , Vasilios Melfos , Margarita Melfou , Alexandre Tarantola , Max Frenzel , Paul G. Spry , Konstantinos Soukis , Christophe Scheffer , Olivier Vanderhaeghe , Laurie Reisberg , Lambrini Papadopoulou , Christina Stouraiti , Constantinos Mavrogonatos
{"title":"Molybdenite Re-Os geochronology and conditions of formation of potassic and sodic-calcic alteration associated with the Plaka porphyry Mo-Cu system, Lavrion, Greece","authors":"Panagiotis Voudouris , Vasilios Melfos , Margarita Melfou , Alexandre Tarantola , Max Frenzel , Paul G. Spry , Konstantinos Soukis , Christophe Scheffer , Olivier Vanderhaeghe , Laurie Reisberg , Lambrini Papadopoulou , Christina Stouraiti , Constantinos Mavrogonatos","doi":"10.1016/j.gexplo.2024.107609","DOIUrl":null,"url":null,"abstract":"<div><div>The Plaka porphyry Mo-Cu system occurs in the world-class Lavrion Ag-Pb-Zn district in Attica, southern Greece. It is spatially associated with a granodiorite porphyry that intruded the Attic-Cycladic Crystalline Complex in the late Miocene, along the footwall of the Western Cycladic detachment fault. A Re-Os age of 9.51 ± 0.04 Ma indicates that molybdenite formed during the early stage of the granodiorite porphyry intrusion and that subsequent cooling was very rapid. Brittle deformation and hydrothermal fluid flow created a network of A-, B-, diopside-actinolite and D-veins, associated with potassic-, sodic-calcic and sericitic alterations. Potassic alteration is characterized by secondary biotite + K-feldspar + quartz + magnetite ± apatite, contains disseminated molybdenite, pyrite, and chalcopyrite, and formed at 420–500 °C, at pressures up to 530 bars (< 5.3 km depth) from hydrothermal fluids that underwent phase separation. Sodic-calcic alteration is devoid of Cu-Mo mineralization and, consists of diopside + actinolite + oligoclase/andesine + titanite + magnetite ± epidote-allanite ± chlorite ± quartz, which corresponded to a temperature range of between 350 and < 500 °C. Primary magnetite, titanite and biotite crystallized between the nickel‑nickel oxide (NNO) and hematite-magnetite (HM) buffers, indicating fairly oxidizing conditions for the granodioritic magma. Hydrothermal biotite plots closer to the HM buffer suggesting increasing oxygen fugacity during exsolution of the hydrothermal fluids associated with potassic alteration. The system evolved toward more reducing conditions during sericitic alteration and associated pyrite-molybdenite mineralization. A combination of evaporated seawater and magmatic fluids likely caused formation of the sodic-calcic alteration through the decarbonation of the host marble.</div></div>","PeriodicalId":16336,"journal":{"name":"Journal of Geochemical Exploration","volume":"270 ","pages":"Article 107609"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geochemical Exploration","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375674224002255","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Plaka porphyry Mo-Cu system occurs in the world-class Lavrion Ag-Pb-Zn district in Attica, southern Greece. It is spatially associated with a granodiorite porphyry that intruded the Attic-Cycladic Crystalline Complex in the late Miocene, along the footwall of the Western Cycladic detachment fault. A Re-Os age of 9.51 ± 0.04 Ma indicates that molybdenite formed during the early stage of the granodiorite porphyry intrusion and that subsequent cooling was very rapid. Brittle deformation and hydrothermal fluid flow created a network of A-, B-, diopside-actinolite and D-veins, associated with potassic-, sodic-calcic and sericitic alterations. Potassic alteration is characterized by secondary biotite + K-feldspar + quartz + magnetite ± apatite, contains disseminated molybdenite, pyrite, and chalcopyrite, and formed at 420–500 °C, at pressures up to 530 bars (< 5.3 km depth) from hydrothermal fluids that underwent phase separation. Sodic-calcic alteration is devoid of Cu-Mo mineralization and, consists of diopside + actinolite + oligoclase/andesine + titanite + magnetite ± epidote-allanite ± chlorite ± quartz, which corresponded to a temperature range of between 350 and < 500 °C. Primary magnetite, titanite and biotite crystallized between the nickel‑nickel oxide (NNO) and hematite-magnetite (HM) buffers, indicating fairly oxidizing conditions for the granodioritic magma. Hydrothermal biotite plots closer to the HM buffer suggesting increasing oxygen fugacity during exsolution of the hydrothermal fluids associated with potassic alteration. The system evolved toward more reducing conditions during sericitic alteration and associated pyrite-molybdenite mineralization. A combination of evaporated seawater and magmatic fluids likely caused formation of the sodic-calcic alteration through the decarbonation of the host marble.
期刊介绍:
Journal of Geochemical Exploration is mostly dedicated to publication of original studies in exploration and environmental geochemistry and related topics.
Contributions considered of prevalent interest for the journal include researches based on the application of innovative methods to:
define the genesis and the evolution of mineral deposits including transfer of elements in large-scale mineralized areas.
analyze complex systems at the boundaries between bio-geochemistry, metal transport and mineral accumulation.
evaluate effects of historical mining activities on the surface environment.
trace pollutant sources and define their fate and transport models in the near-surface and surface environments involving solid, fluid and aerial matrices.
assess and quantify natural and technogenic radioactivity in the environment.
determine geochemical anomalies and set baseline reference values using compositional data analysis, multivariate statistics and geo-spatial analysis.
assess the impacts of anthropogenic contamination on ecosystems and human health at local and regional scale to prioritize and classify risks through deterministic and stochastic approaches.
Papers dedicated to the presentation of newly developed methods in analytical geochemistry to be applied in the field or in laboratory are also within the topics of interest for the journal.