CRISPR-integrated metal-organic frameworks for biosensing applications: Recent advances and future perspective

IF 5.4 Q1 CHEMISTRY, ANALYTICAL
Babak Mikaeeli Kangarshahi , Anahita Beigi Javazm , Seyed Morteza Naghib
{"title":"CRISPR-integrated metal-organic frameworks for biosensing applications: Recent advances and future perspective","authors":"Babak Mikaeeli Kangarshahi ,&nbsp;Anahita Beigi Javazm ,&nbsp;Seyed Morteza Naghib","doi":"10.1016/j.sbsr.2025.100736","DOIUrl":null,"url":null,"abstract":"<div><div>Metal-organic frameworks (MOFs) are porous substances characterized by elevated surface areas and adjustable pore dimensions used in diverse applications, including gas storage, catalysis, drug delivery, and sensing. Biosensing is a promising field that aims to identify and quantify biomolecules such as DNA, RNA, and proteins with high sensitivity and specificity. Biosensors use a transducer and a biological recognition element to make an output correlated with the level of the target analyte. They have advantages over conventional methods, such as simplicity, rapidity, portability, and low cost. Recently, a new type of biosensor has emerged that integrates MOFs with CRISPR, a powerful gene editing tool. Biosensing can utilize CRISPR-Cas systems, as the cleavage of target DNA or RNA by Cas proteins generates detectable signals. MOFs can be used to hold, protect, and release CRISPR-Cas parts; improve signal transduction and amplification; and provide a wide range of functions and tunability for CRISPR-based biosensors by incorporating various metal nodes, organic linkers, pore sizes, and surface modifications. This review discusses recent advancements and challenges in MOF-CRISPR biosensor development, focusing on design principles, sensing mechanisms, and performance. It explores potential applications in biomedical and environmental fields like disease diagnosis, gene therapy, and pollutant monitoring and offers future directions for improvement.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"47 ","pages":"Article 100736"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180425000029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Metal-organic frameworks (MOFs) are porous substances characterized by elevated surface areas and adjustable pore dimensions used in diverse applications, including gas storage, catalysis, drug delivery, and sensing. Biosensing is a promising field that aims to identify and quantify biomolecules such as DNA, RNA, and proteins with high sensitivity and specificity. Biosensors use a transducer and a biological recognition element to make an output correlated with the level of the target analyte. They have advantages over conventional methods, such as simplicity, rapidity, portability, and low cost. Recently, a new type of biosensor has emerged that integrates MOFs with CRISPR, a powerful gene editing tool. Biosensing can utilize CRISPR-Cas systems, as the cleavage of target DNA or RNA by Cas proteins generates detectable signals. MOFs can be used to hold, protect, and release CRISPR-Cas parts; improve signal transduction and amplification; and provide a wide range of functions and tunability for CRISPR-based biosensors by incorporating various metal nodes, organic linkers, pore sizes, and surface modifications. This review discusses recent advancements and challenges in MOF-CRISPR biosensor development, focusing on design principles, sensing mechanisms, and performance. It explores potential applications in biomedical and environmental fields like disease diagnosis, gene therapy, and pollutant monitoring and offers future directions for improvement.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensing and Bio-Sensing Research
Sensing and Bio-Sensing Research Engineering-Electrical and Electronic Engineering
CiteScore
10.70
自引率
3.80%
发文量
68
审稿时长
87 days
期刊介绍: Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies. The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信