{"title":"Electrocatalytic upgrading of furan derivatives","authors":"Anousha Sohail, Chularat Wattanakit","doi":"10.1016/j.coelec.2024.101628","DOIUrl":null,"url":null,"abstract":"<div><div>Rising concerns over fossil fuel reliance have driven the development of biomass-derived chemical production. Transforming hydroxymethylfurfural (HMF) and furfural, key platform compounds, into sustainable chemicals enhances the biomass value chain. Electrosynthesis emerges as a green and efficient approach to upgrading furan derivatives into biofuels, biopolymers, and industrial chemicals. This minireview discusses advancements in electrocatalytic upgrading of furan derivatives, particularly featuring biorefinery with hydrogen production for cost-efficient and sustainable processes. Importantly, this minireview also highlights the current advancement in electrocatalyst design and addresses the challenges of improving electrocatalytic efficiency in terms of enhanced product selectivity, Faradaic efficiency (FE), and overall process sustainability.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"49 ","pages":"Article 101628"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910324001893","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Rising concerns over fossil fuel reliance have driven the development of biomass-derived chemical production. Transforming hydroxymethylfurfural (HMF) and furfural, key platform compounds, into sustainable chemicals enhances the biomass value chain. Electrosynthesis emerges as a green and efficient approach to upgrading furan derivatives into biofuels, biopolymers, and industrial chemicals. This minireview discusses advancements in electrocatalytic upgrading of furan derivatives, particularly featuring biorefinery with hydrogen production for cost-efficient and sustainable processes. Importantly, this minireview also highlights the current advancement in electrocatalyst design and addresses the challenges of improving electrocatalytic efficiency in terms of enhanced product selectivity, Faradaic efficiency (FE), and overall process sustainability.
期刊介绍:
The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner:
1.The views of experts on current advances in electrochemistry in a clear and readable form.
2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle:
• Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •