{"title":"Codimensions of algebras with pseudoautomorphism and their exponential growth","authors":"Elena Campedel, Ginevra Giordani, Antonio Ioppolo","doi":"10.1016/j.jalgebra.2025.01.015","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>F</em> be a fixed field of characteristic zero containing an element <em>i</em> such that <span><math><msup><mrow><mi>i</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mo>−</mo><mn>1</mn></math></span>. In this paper we consider finite dimensional superalgebras over <em>F</em> endowed with a pseudoautomorphism <em>p</em> and we investigate the asymptotic behavior of the corresponding sequence of <em>p</em>-codimensions <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, <span><math><mi>n</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo></math></span>. First we give a positive answer to a conjecture of Amitsur in this setting: the <em>p</em>-exponent <span><math><msup><mrow><mi>exp</mi></mrow><mrow><mi>p</mi></mrow></msup><mo></mo><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>lim</mi></mrow><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></msub><mo></mo><mroot><mrow><msubsup><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></mroot></math></span> always exists and it is an integer. In the final part we characterize the algebras whose exponential growth is bounded by 2.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"668 ","pages":"Pages 75-91"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325000377","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let F be a fixed field of characteristic zero containing an element i such that . In this paper we consider finite dimensional superalgebras over F endowed with a pseudoautomorphism p and we investigate the asymptotic behavior of the corresponding sequence of p-codimensions , . First we give a positive answer to a conjecture of Amitsur in this setting: the p-exponent always exists and it is an integer. In the final part we characterize the algebras whose exponential growth is bounded by 2.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.