AI-rings on almost completely decomposable Abelian groups

IF 0.8 2区 数学 Q2 MATHEMATICS
Ekaterina Kompantseva , Askar Tuganbaev
{"title":"AI-rings on almost completely decomposable Abelian groups","authors":"Ekaterina Kompantseva ,&nbsp;Askar Tuganbaev","doi":"10.1016/j.jalgebra.2025.01.007","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the class <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> of reduced abelian block-rigid <em>CRQ</em>-groups of ring type. An <span>absolute ideal</span> of an abelian group <em>G</em> is a subgroup of <em>G</em> which is an ideal in any ring on <em>G</em>. A ring <em>R</em> is called an <em>AI</em><strong>-ring</strong> if any ideal of <em>R</em> is an absolute ideal of its additive group. An abelian group <em>G</em> is called an <em>RAI</em><strong>-group</strong> if there exists at least one <em>AI</em>-ring on <em>G</em>. It is proved that any group in <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is an <em>RAI</em>-group. Thus, in the class <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, we solve Problem 93 in the monograph Fuchs (1973) <span><span>[9]</span></span>. We classify <em>AI</em>-rings on groups in the class <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"668 ","pages":"Pages 1-19"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325000298","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the class A0 of reduced abelian block-rigid CRQ-groups of ring type. An absolute ideal of an abelian group G is a subgroup of G which is an ideal in any ring on G. A ring R is called an AI-ring if any ideal of R is an absolute ideal of its additive group. An abelian group G is called an RAI-group if there exists at least one AI-ring on G. It is proved that any group in A0 is an RAI-group. Thus, in the class A0, we solve Problem 93 in the monograph Fuchs (1973) [9]. We classify AI-rings on groups in the class A0.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信