Yiheng Fu , Fengying Wu , Chen Chai , Wei Cui , Yongle Li , Lin Zhao
{"title":"Assessment of driving safety and comfort during vortex-induced vibrations in a long-span bridge considering wind-vehicle-bridge interactions","authors":"Yiheng Fu , Fengying Wu , Chen Chai , Wei Cui , Yongle Li , Lin Zhao","doi":"10.1016/j.jweia.2025.106007","DOIUrl":null,"url":null,"abstract":"<div><div>Vortex-induced vibration (VIV) has a detrimental influence on the traffic management of bridges and threatens driving safety and comfort. To quantitatively assess driving safety and comfort under VIV conditions, this study incorporates a nonlinear vortex-excited force aerodynamic model to simulate VIVs based on the classic theory of wind-vehicle-bridge interactions. Based on the wheel load reduction rate and acceleration response to vehicle vibration, driving safety and comfort are analyzed from the perspective of vehicle dynamic performance. A novel approach is firstly proposed to quantify the influence of blind area on driving safety by incorporating the concept of stopping sight distance, along with the introduction of a general fitting formula to address this issue. Additionally, the factors influencing drivers’ vision under VIV are discussed, including height, distance and time-history. This study provides a comprehensive comparison of the permitted limits on VIV amplitudes from the perspectives of driving safety and comfort, highlighting the significance of considering the comfort index based on vehicle dynamic response. This approach effectively addresses the shortcomings of existing specifications in assessing driving comfort while proposing formulations for calculating VIV amplitude limits at different vehicle speeds, aiming to increase the maximal transportation capacity.</div></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"257 ","pages":"Article 106007"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wind Engineering and Industrial Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167610525000030","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Vortex-induced vibration (VIV) has a detrimental influence on the traffic management of bridges and threatens driving safety and comfort. To quantitatively assess driving safety and comfort under VIV conditions, this study incorporates a nonlinear vortex-excited force aerodynamic model to simulate VIVs based on the classic theory of wind-vehicle-bridge interactions. Based on the wheel load reduction rate and acceleration response to vehicle vibration, driving safety and comfort are analyzed from the perspective of vehicle dynamic performance. A novel approach is firstly proposed to quantify the influence of blind area on driving safety by incorporating the concept of stopping sight distance, along with the introduction of a general fitting formula to address this issue. Additionally, the factors influencing drivers’ vision under VIV are discussed, including height, distance and time-history. This study provides a comprehensive comparison of the permitted limits on VIV amplitudes from the perspectives of driving safety and comfort, highlighting the significance of considering the comfort index based on vehicle dynamic response. This approach effectively addresses the shortcomings of existing specifications in assessing driving comfort while proposing formulations for calculating VIV amplitude limits at different vehicle speeds, aiming to increase the maximal transportation capacity.
期刊介绍:
The objective of the journal is to provide a means for the publication and interchange of information, on an international basis, on all those aspects of wind engineering that are included in the activities of the International Association for Wind Engineering http://www.iawe.org/. These are: social and economic impact of wind effects; wind characteristics and structure, local wind environments, wind loads and structural response, diffusion, pollutant dispersion and matter transport, wind effects on building heat loss and ventilation, wind effects on transport systems, aerodynamic aspects of wind energy generation, and codification of wind effects.
Papers on these subjects describing full-scale measurements, wind-tunnel simulation studies, computational or theoretical methods are published, as well as papers dealing with the development of techniques and apparatus for wind engineering experiments.